
ScenarioMaker 1.5
the world builder

v 1.5 by Luca
Accomazzi

Requirements

Hardware and software requirements
ScenarioMaker requires a Macintosh with a 68020 or better processor, and a
color screen capable of displaying 256 colors or more. A fast Macintosh
(68040 or PowerPC) is suggested. A 13” (or bigger) screen is strongly
suggested.
ScenarioMaker, just like the Dream application, requires System 7 version 7.0
or better. The ResEdit application, (version 2.1 or following), from Apple, is
required to create some components of a scenario.
Multiple monitor users
ScenarioMaker does support multiple monitors. Please remember a few
technical considerations:
1. ScenarioMaker’s icons palette (i.e. windoid) always appears on the main
screen (the one with the menu bar) and is sized so as to fit that screen.
2. If your main screen has less than 256 colors, please move the windoid to a
screen that does.
Multisync monitors and Radius Pivot users
If you use the Monitors control panel to change the resolution of your monitor,
or (Pivot users only) you pivot your screen during usage of ScenarioMaker, the
icons palette (i.e. windoid) will appear either too long or too short for your
monitor. To correct, press the ‘R’ key on your keyboard. ScenarioMaker will
immediately adjust its windoid.
For technical reasons, this command only works if you have an opened
window (either an arena or a place under construction will do).

Knowledge required
To create game scenarios with ScenarioMaker you need a working knowledge
of ResEdit, the resource editor from Apple Computers. Addison-Wesley has a
good book on the subject, which includes the software on a diskette.
Of course you’ll need both a copy of the Dream application and a knowledge
of its mechanics (that is, you must have played at least a game adventure).
No programming is required to create a scenario.

Legalese considerations
Apple, Macintosh, Radius, Pivot, Addison Wesley, and almost all uppercase
terms used in this manual tend to be trademarks or registered trademarks of
their respective owners. Those owners tend to be huge, wealthy companies
whose staff include blood-thirsty lawyers by the dozen. The lawyers are
usually kept inside small rooms, and fed only once a day with stale bread and

water; then they are thrown at those guys who use the copyrighted,
trademarked and Jeeze-knows-what terms without including a note such as
this, and strange symbols (like ©; ® and ™).
I do hope I satisfied the legal requirement of the above-mentioned firms. If I
didn’t, a short, sharp whistle thrown in my direction would be more than
enough to make me comply. Whimpering.

What’s in a Dream?

Inside a Scenario
A game scenario for the Dream game system is a Macintosh file which
contains a description of the monsters, places, spells and other entities which
the player will meet during game play. Every entity is contained inside a
Macintosh resource. The resource is characterised by a type (four characters;
e.g. ‘Shop’ for a shop, ‘Mstr’ for a monster) and a numeric identifier (e.g. the
one ‘Mstr’ whose numeric ID is 1000 might be a kobold).
Take a look: drag a Dream scenario upon the ResEdit application icon. You
might use “Spirit of Darkness”, one sample adventure which is included with
the Dream application itself.

You’ll see, inside a window, the various resources which comprise a scenario.
They include:
• ‘Aren’: an arena (that is, a room where fighting takes place);
• ‘icl8’, ‘icl4’ and ‘ICN#’: icons for monsters, objects ad game locations;
• ‘Info’: Information and instructions about the scenario, created by the game

designer (you) for the Dream gaming system.
• ‘MDeL’: a monster decision list, that is, a list of orders for a monster to

follow;
• ‘Mstr’: a monster type;
• 'Nctr': Encounter;
• ‘Obj ‘: an item (either sold at a shop or found inside a monster’s lair);
• ‘PICT’: a picture showing a place in full detail
• ‘Plac’: a place to visit (that is, a map as show in the Dream main window);
• ‘Ridl’: a question to be asked to the player, a list of possible answers and

the consequences of each answer (for short “a riddle”)
• 'Shop': List of items for sale inside a shop;
• ‘SMkr’: Information on the scenario created by the ScenarioMaker application for its

own purposes.
• ‘snd ‘: Digitised sound, used to make the monsters roar or speak;
• ‘Spel’: a spell (either a wizard’s or a cleric’s one);
• 'STR#': Collection of tips which the adventurers will be given inside inns.
• ‘TEXT’, ‘styl’: description of the places. To be shown in the description

windoid and spoken aloud by Dream
• ‘Trap’: a mechanical or magical device;
• 'vers': Scenario version;
• ‘Wndr': Wondering monsters list;
Not all scenarios will include every kind of resource listed before. A few very
complex scenarios might include other kinds of resources to obtain a
sophisticated effect known as “overriding”, which we will discuss in a following
chapter of this manual.

Most resources of the kinds seen before can be created by simply filling in a
template (that is, a dialog box with fields). For example, let’s try to see what
makes a monster tick. Using ResEdit, open the file ‘ScenarioMaker.rez’, which
you found in the same package which included this manual and the
ScenarioMaker application. Now, double-click on the ‘Mstr’ icon inside the
“Spirit of Darkness” window. You’ll see a list of monsters. Choose one, and
open it with another double-click. A window will open showing the description
for this monster. You won’t understand much, for

now: this manual will enable you to understand how the template you’re
looking at turns into a dangerous foe for player characters.

Checking a scenario
The best new feature for ScenarioMaker 1.5 is the availability of a “Check
scenario” feature. Use it often, use it well: ScenarioMaker will take a long look
at your work and tell you what’s still missing to make a finished product. It’s the
next best thing to shipping a copy of the scenario to the Dream designers (yes,
you can do that, also: we’ll be glad to help, but ScenarioMaker can do this
every time you ask and be finished in a few seconds)
The inspection is very through: there isn’t much that can escape
ScenarioMaker’s attention.
Warning: Checking only makes sense when the scenario is open, but there’s
neither a place, nor an arena, shown in the main (construction) window. Close
all windows before you check your scenario.
When ScenarioMaker is finished checking (it might take a few minutes: the
more complex your scenario, the longer the search), it will report its findings in
a dialog box.
The box has a list with the problems. If you click on an item, an explanation
appears. Problems are divided in two categories: “warnings” and “errors”. A
warning might be ignored: it may be that you known perfectly well what you
are doing; ScenarioMaker is only reporting that something strange, or
potentially dangerous, is inside your scenario.
For example, ScenarioMaker might report:
WARNING: You created a Place, but there is no reference to it in any other
place, so the player characters won't ever be able to reach it
There is normally no reason to have an unreachable place inside a scenario.
Still, maybe you aren’t finished creating your scenario, and are planning to add
the references to that place later on.
So, in general, a warning means that you’d better double check your scenario
and make sure that you are very sure of what you’re doing.

Errors, on the other hand, are problems that will make your scenario break
inside Sword Dream. For example:
ERROR: There is no Place with an ID of 1000. Such a place is strictly
required, since the game play is supposed to start from there
In that case, ScenarioMaker is reporting a problem that you ought to fix as
soon as possible. Your scenario won’t work until you fix it.

Required resources
Every single game scenario must contain the following resources:
• 'Plac' ID 1000: the very first place where adventuring begins.
• 'PICT' ID 1128: “About this scenario” splash screen. It is suggested that the PICT is a

four-bit, grey scale image.

• 'Info' ID 1000: Information about the scenario from the scenario designer to the
Dream game system. This is strictly necessary: the Dream application will assume
standard values for the parameters and won’t bomb even if there is no ‘Info’ resource
inside the scenario, but the information inside the Info resource are needed to keep
Dream and its Conflict Resolver working well together..

• ‘ICN#’: black and white icons for locations, monsters and objects.

A few rules

Under the MacOS™, resources must have ID between 128 and 32767. Dream further
narrows this numeric range. Resources in a scenario must have ID between 1000 and
9999. All other valid IDs are reserved for usage by the Dream engine itself.
All resources should be kept purgeable (this isn’t strictly necessary — that is, the game
won’t bomb — with current versions of the Dream application, but game designers
should comply if they wish to stay compatible with versions beyond 1.5).

The rest of the rules
Keep in mind that the Dream application is distributed has been available for
more than a year now in its first version, v 1.0.2. Dream 1.0 was included in at
least four CDs (two shareware collections in the US, one in France, and one
electronic magazine). Thus, it is very widespread.
If you wish to create a scenario compatible with the old version 1.0, avoid
using those Dream features which are marked “version 1.1 (1.2, 1.3... 1.6) or
following”. If you do, Dream 1.0 will be able to play the scenario.
If you forfeit compatibility with the old version 1.0, you gain use to a slew of
new feature and can use everything detailed in this manual (don’t mind the
references to versions between 1.1 and 1.4: those were never made available
outside a small group of friend and beta testers in Italy).

There isn’t much more to be said. To create your game scenario, you must
simply create a new scenario file (the ScenarioMaker application will gladly do
this for you, or you may use ResEdit), and fill it with resources.
In the following chapter we will see much of the internal structure of Dream
and the concepts on which it is based. This knowledge will form the basis on
which you’ll build your scenarios.
Next, we’ll follow a tutorial, so that you’ll be able to build a simple scenario and
get the taste of a session with ScenarioMaker.
A smallish scenario, “Akko’s place”; is available on request to Designers:
There you can create characters of every class, have them easily reach any
experience level, and buy them very powerful magic items. Thus, you can
create characters for game testing. To receive a copy, contact the Dream
Team.
The rest of this manual is a reference guide; it’s mostly devoted to the single
resource types: a paragraph for each, describing what it is used for and how to
create one. In its last part, this manual will give away a few tips and tricks,
suggestions and other miscellaneous information.

Inside Dream

Map of the scenario
One of the first things you should create when getting ready to write a scenario
is the map of the places that comprise the scenario. I’ll put here the map for
“Spirit of Darkness”, so that you may better understand what a scenario map
is.

Valley of
Dawn

Smallville Mines,
upper levelWizard tower

Mines,
lower level

Mines, mid
level

Inn Aunt
Seraphine'sShopTemple

Aunt
Seraphine's,
second floor

Bank

Each of the boxes in the graph above is known as a “place”. The arrows
connect places: if there is an arrow between two places, then the place above
contains an entrance to the place below. Exit from the place below will always
take the characters to the place above, from whence they came.
The depth of the map is not an issue. You can create a twenty level dungeon,
if you like, or a skyscraper with sixty floors. You can also reuse some of the
components. You might, for example, have two towns in the valley, and put the
same shop in both. Players entering the shop from town 1 will always exit to
town 1, and players entering from town 2 will find themselves back to town 2
when they exit the shop. To them, there will be two identical shops in the two
towns.
The one rule that can’t be broken when designing a scenario map is: a place is
contained in a place; when exiting a place the characters will return to the
place from where they came.
There are also a couple of conventions to be remembered: first, when the
characters exit from the topmost place, they are exiting the scenario. Dream
will ask the player if he/she wishes to continue playing another scenario or exit
the game session.
Second, the topmost place must have a numeric identifier of 1000. Dream will
put the player characters inside the place with ID 1000, whenever the player
starts a new scenario.

The characters
Whenever you have to refer to a player character class, make use of the
following table:
Class Numeric identifier
Fighter 0
Ranger 1
Paladin 2
Rogue 3
Cleric 4
Wizard 5
Unclassed 6

The “unclassed” specifier can be used with Extraordinary Characters (see
below).

The available races for player characters use the following numeric IDs:
Race Numeric identifier
0 Human
1 Elf
2 Dwarf
3 Gnome
4 Non humanoid
Code 4 is reserved for Extraordinary Characters (see below).

Fighting
Attack forms
When fighting takes place, a creature can attack another using one of a
number of attack forms. Dream supports the following attacks (note that only a
few of those can be enacted by a player character):

Code Kind of attack
11 Illness, disease
12 Curse
13 Special ‡
14 Death Magic
15 Missile weapon (arrows, darts…)
16 Magic weapon, +5 to hit
17 Magic weapon, +4 to hit
18 Magic weapon, +3 to hit
19 Magic weapon, +2 to hit
20 Magic weapon, +1 to hit
21 Weapon (sword, mace, axe…)
22 Energy (magic missiles, energy burst…)
23 Experience level drain
24 Turn to stone †
25 Acid
26 Poison
27 Healing magic (cure graze and better)
28 Electricity (shocking grasp, Galvani’s spark…)
29 Frost (Ice storm…)
30 Fire (Fireball, dragon breath weapon…)
31 Mind attack, psionics

† Turn to stone is only available from version 1.5.

‡ All attacks which can’t be assimilated to one of the above are said to be
“special” attacks. For example, the Slow spell, which slows monsters,
constitutes a special attack.

A creature can be protected, either by its monstrous nature or through magic,
from any of the attack forms. Protection can be either total (for example, you
shouldn’t be able to affect a skeleton with death magic, nor a giant worm with
a mind attack) or

partial (for example, a character protected via Protection from fire spell can still
be affected by fires, but takes only a half damage).
Damage
Whenever it is necessary to inflict damage on someone, either character or
monster, Dream must be told how heavy the attack form is. Typical damage
ranges are:
1 to 4 hit points for a knife
1 to 8 points for a long sword
1 to 12 points for a halberd
5 to 30 points for a fireball created by a fifth level wizard
20-200 points for an Armageddon spell created by a twentieth-level cleric
As you can see, damage is given as a range of values: there’s a minimum and
a maximum. To assess a damage in the 1-6 range, Dream will generate a
random number throwing a software six-sided die; you can instruct Dream to
do so writing down inside the appropriate template that a weapon (or a spell)
does damage with one (1) throw of a six (6) sided software die.
By the way, even if there are no physical seven-sided dice in existence, Dream
might as easily create one on software for you.
To generate a damage ranging from 2 to 12, you can instruct Dream to throw
two dice with six sides. Dream will then sum the results. You might know that,
by throwing a couple of six-sided dice, results in the range 6 to 8 are the most
likely: keep this in mind when designing damage ranges. For example, with the
5-30 range quoted before (that is, five six-sided dice) it is very likely that the
actual damage will be between 14 and 21; other values are much harder to
come by.

Spells
Spells fall into one of two broad categories: a few are instantaneous (take
place immediately and have permanent effect, like Cure Graze, Curse Undead
or Blast Fireball), others have a variable duration and their effects vanish when
the time is over (like Protection from Fire or Feign Death).
Material components
As you know, most spells require a material component to be cast. The
following codes are used to specify the material components.
Code Material
0 No material component required
128 Holy water
129 Amber
130 Bat guano
132 Glass lens
133 Magnet
134 Mushroom
135 Quicksilver
136 Silver mirror
200 Rations
201 Cure potion
Any other The item whose resource id is equal to the code.

Use only items defined in your scenarios or listed

in the “Dream Database” chapter.

Note that any object can work as a spell component. This creates exciting
possibilities: think of a scenario where the players know that only a very
special, very secret spell can save the world. They have to locate the scroll
where the spell

is written, then they must locate a wondrous item which is required to cast the
spell (what about an edelweiss, lost somewhere among huge mountains?)
Spell level and IDs
Both wizard and cleric spells are characterised by a level. The higher the level,
the more powerful the spell is. There is no relation between a spell resource ID
and its level in Dream 1.5.
Range
An attack (by spell or otherwise) is also characterised by a range. If the attack
can only be launched on somebody close to the attacker (like the thrust of a
stiletto), then the range is said to be 1. This means that the square the
defender is on can be at most one unit distance from the attacker’s one.
All melee attacks have a range of one.
An action which is only attempted by a creature on itself, like the Feign Death
spell, is said to have a range of zero.
Attacks from afar, like an arrow from a bow, a dart, or a Magic Missile spell,
obviously have a range greater than one.
Area of effect
Another important characteristic of a spell is the area of effect. The following
possibilities are supported by all versions of the Dream engine:

Code Area of effect Example
0 The spellcaster Light
1 Any one member of the

spellcaster’s group
Cure graze

2 Any one enemy A sword stroke
3 All members of the spellcaster

group
Cure all wounds

4 All enemies Curse all undead
5 Circular area Fireball
6 Square area Ice storm
7 Straight path Call Lightning

Saving throws
A few spells always work their magic: Light, for example, invariably results in a
magic form of illumination to appear above the caster’s head. Some other
spells might not work at times: such is the case for Slow. These spells are said
to have a “saving throw” (the term is taken from traditional role playing games,
where the working of the spell is adjudicated via the throw of a die. If the roll is
good, the creature which is target to the spell was “saved” from the spell
effects). The saving throws negates the effects of the spell (if the target is a
monster, by the way, the higher the number of hit dice, the most likely it is the
monster will be saved).
Yet other spells can be “partially saved” against. Take “Blast Fireball”, for
example: at best, the target might take only a half as much damage as
prescribed (this excludes magical defences like “Protection from fire”, of
course). These spells are said to have a “save for one half” saving throw.
Other spell attributes

A spell may constitute a kind of attack (a fireball most certainly could be
considered an attack by the unfortunate goblin caught in the middle). So, every
spell is attributed a code from the table in Inside Dream/Fighting/Attack forms.
It is known as the spell “kind code”.
Spells ought to have an associated icon. If you browse through the spells
inside the Dream application, version 1.5, you’ll notice that there’s no icon for
them. Icons will

be shown in future releases for the game, though, so you should create one if
you wish to stay compatible.
Spell code selectors
All other things being equal, Dream needs a way to distinguish between
variations of the same magic. For example, “Slow Poison”, “Cure Poison” and
“Poison” spells all represent different forms of the same magic, and are
distinguished via a special spell code.
Listed below are the supported codes. Unless otherwise noted, all versions of
the dream application support all codes.
For all spells
-2: “Rune”-kind protection from some attack form. This spell will block the
first enemy spell of the specified kind, then automatically expire. Code -2 can’t
be used with petrify, poison an similar attack forms, whose effect is not
physical damage. Code -2 is only supported by version 1.5 and greater.
-1: Protection from that attack form. Reduces all damage to one half,
rounded down, for the duration of the spell.
0: Attack of the spell type, which does damage as specified. For example, if
the spell kind code is 30 (fire) and the code selector is 0 (attack) then you are
creating a fire-based attack spell, like Fireball.

For Illness, poison, turn to stone:
1: Slow down effects of the attack form
2: Cure effects of the attack form
3: Afflict target with the attack form

For special magic
1: Light
2: Identify
3: Slow
4: Haste
5: Feign death
7: Restore lost experience levels
8: Resurrect
9: Dispel magic
10: Fly
The following forms of special magic are only supported by Dream version 1.5
or greater:
11: Soul search (detect alignment)
12: Change the target’s armor class
13: Create a clone of the target
14: Vision (see the character’s surroundings)
15: Teleport. Use the spell “reserved” field to specify the destination. Use 0
for “back to the previous place”, 1 for the topmost place in the scenario, or any

place id.
16: Destroy cursed items
17: Invisibility. Use the spell “reserved” field to specify the spell scope. Use 0
to indicate that invisible enemies should become visible, 1 to make the spell
target invisible.

All other codes are reserved. Don’t use them no matter what.

Objects

Objects can be single (like a sword) or multiple (like arrows, which are bought
by the dozen). When an item is multiple, the number of singular entities which
compose it are written inside the “Nr. charges” field of the object template.
Weight and other things
To define an object for use inside Dream, you must provide:
• An icon (which will be shown in the player information sheet and/or inside
shops).
• A price. If the item is put in a shop, the shopkeeper will ask for the price you
list. If the item is sold by the player, the character will get nine tenths (that is,
90%) of the listed price
• A weight. Remember that the character won’t be able to carry too much
weight. You might have a bit of fun creating very useful items which are so
weighty that carrying them around is a problem.
• A public name. This is the name by which the player will know the object if he
finds it. It should be quite vague (like, “a glass sphere”).
• A private name. This is the name which is revealed through use of the
Identify spell. It should be very specific (like, “Crystal ball of scrying”). Items
bought in shops are known to the player by their private names: it is supposed
that the seller told the characters all about the item.
• A list of body parts where the item can be stored. For example, a helm should
be allowed in the sack, in hand and above the head. Be sure to allow for the
sack at all times, or the characters will be unable to get it (all items end up in
the sack when grabbed). As a general rule, allow everything to be kept in hand
(otherwise it will be impossible to cast an Identify spell).
• A list of character classes which will be allowed to use (don) the item. Be
creative, but remember the general rules in the following paragraph:
Character classes and items
1. Wizards shouldn’t be allowed to use armor. Their armor class should be
kept very low, or they would quickly become the most powerful class. Similarly,
allow them to use only the puniest weapons. All magic items should be open to
them, with the only exception of magic weaponry and armor.
2. Clerics should be allowed to use almost all kind of armour and weapons, but
the most powerful. They should be limited in the magic items they get access
to.
3. Fighters should be able to use every kind of armor and weaponry, both
magic and mundane. No magic item should be allowed to them, with the only
exception of magic weaponry and armor.
4. Paladins and rangers should follow the same ground rules set for fighters,
but rangers should be unable to use the best armor and able to use some
magic items. Paladins should be unable to keep precious and luxury items, like
jewellery, which wouldn’t befit their lifestyle.
5. Rogues should be able to use almost all weaponry, but be very, very limited
as to armor (they need to be nimble and agile, and one simply can’t run

around inside a full plate mail). Rogues ought to be the only character class
allowed to use throwing weapons.
6. Don’t inflate magic. A magic item should be a revered prize, not the rule.
(there is only one magic item in “Spirit of Darkness”, after all). If players
complain they don’t get enough magic items, that’ll whet their appetite for more
adventure.
7. Don’t allow players to become invincible. You can easily create a magic ring
which will give them all an armor class of -10. So what? What are we going to
throw at them after that, dragons by the dozen? A character should find
extremely hard to reach armor classes below 0. A fifth level paladin should be
very happy to own a

single shield +1 and a long sword +1. Armor class -5 should be a revered
dream until experience level 10 or so.
Item categories
Items can also be put in any of the following categories.
• Magic: a magic item is entitled to better protection against crushing blows.
• Weapon: a weapon is an item which can be wielded and used against
monsters. See below for more information specific to weapons. If you state
that an item is a weapon, be certain to provide the amount of damage the
weapon shall inflict on enemies. If an item is both magic and weapon, insert a
positive value in the “base damage” box. For a long sword to do damage in the
1-8 range, select base damage 0, number of dice 1, dice size 8. Then you
might create a +1 magic long sword: type the save characteristics and put 1 in
the base damage box. The magic sword will do damage in the 2-9 range.
• Armor: an armor is an object that will protect the owner from being hit. See
below.
• Throwing weapon: a throwing weapon, like a bow, will propel ammunition,
like an arrow. See below.
• Ammunition: an ammunition is used in conjunction with a throwing weapon.
See below.
• Gives light: torches, lamps and lanterns are light-bringing devices, but you
might also create a magic beaming item. To create a standard luminous object,
put it into the “gives light” category, then type the number of minutes it will
work before discharging in the “Number of charges” box. To create a magically
resplendent item, put it into the “gives light” and “magic” categories, and write
a zero in the “Number of charges” box.
• Rechargeable: a torch can’t be recharged, but a lantern might.
• Cursed: a cursed item can’t be thrown away or sold by the owner once
wielded. In Dream 1.0 there’s no way a character can get rid of a cursed item,
so use this feature with wisdom.
• Intelligent: not yet implemented
• Food: if it’s in the food category, then it is nourishing. Dream looks for items
of this kind every 24 hours, and removes one charge.
• Scroll: a scroll is a magic parchment inscribed with all the explanations
needed for a spellcaster to recreate a spell. If a spellcaster owns a scroll, he or
she may copy it inside his or her spellbook (then the scroll vanishes). So, a
scroll is a most precious item for the player: keep those very rare.
• Book: a book is an item with an associated TEXT piece. When the player
“uses” a book, the Dream engine shows the text inside the text windoid.
• Map: a map is an item with an associated PICT piece. When the player
“uses” a map, the Dream engine shows the picture inside the PICT windoid.

Armor
An armor is a special item which protects the wearer. You can create both

armor of the mundane type (say, a full plate mail) or magic (for example, a
magic protection ring).
The most important attribute of an armor is the bonus it gives to the
character’s armor class. In “Spirit of Darkness”, rogues can buy a leather
armor, which is described as an armor with bonus 2. This means that wearing
leather armor the AC of the character will drop by two factors (in other words,
the character will be 10% harder to hit). So, a rogue with standard armor class
(10) will be given armor class 8 when donning the leather armor.

Weapons
Weapons, like armor, are a special kind of objects.
You, the scenario designer, can create any kind of weaponry you like: swords
and maces, bows and lances, magic items. Under Dream, it would even be
possible to create a gun machine (but please don’t: it would spoil most of the
fantasy).
In Dream, weapons can either work for melee combat or for firing missiles.
As of version 1.0, you are limited in that you can’t create a magic throwing
weapon, like a magic bow. Still, you can create a magic ammunition, like a
magic arrow.

Throwing weapons may be self-propelled (e.g. darts) or need a throwing
instrument (e.g. arrows, which need a bow). We are going to call the throwing
weapons that need a throwing instrument “ammunition” (genial, huh?).

Monsters
Monsters are the creatures that characters meet and interact with. Most of
those will be evil creatures, thirsty for the blood of the player characters. A few
might be willing to help them.

A subset of the characteristics which describe player characters are used to
describe the monster. Other characteristics are specific. The characteristics
which are common between PCs and monsters are:
Intelligence,
Alignment,
Armor Class,
Level,
Damage,
Name.

Monster alignment
Monsters, just like characters, are characterised by an alignment, which
describes their ethos. Alignments are very important even now, and will
become even more important with future releases of the Dream gaming
system.
Good monsters might help the PCs (if they find a similarly aligned PC with a
high charisma). Chaotic monsters won’t collaborate between them; lawful
monsters might regroup, try to flank their adversaries, and flee en masse.
When you wish to create a monster, you should use the following codes. The
alignments are explained in the Sword Dream manual.
Code Alignment
0 Order and evil
1 Plain evil
2 Chaos and evil
3 Plain chaos

4 True neutral
5 Plain order
6 Chaos and good
7 Plain good
8 Order and good

Monster intelligence
Intelligent monsters will behave intelligently. Stupid monsters will perform
poorly.
For example, all monsters tend to panic and flee when they are hurt and the
fight is going badly. Still, non-intelligent monsters tend to act like the common
roaches:

they flee very quickly for a while, then stand still, hoping that the enemy lost
their track.
Monsters with an animal intelligence might flee right away from the character
which punished them, and doing so will easily run into some other character.
Dumb monsters will avoid all characters, but won’t plan their retreat; intelligent
monsters will try to make the quickest possible exit.

Whenever you create a monster, you’ll have to type an intelligence code.
Choose it from the following table.
Code Intelligence level Example
0 Non intelligent Mushrooms
1 Animal intelligence A bird
2 Semi intelligent A very smart dog
3 Low intelligence A goblin
4 Average intelligence A man
5 High intelligence A unicorn
6 Genius A high level wizard; a demon lord
7 God-like An avatar for a god
In Dream 1.5, monster behaviour is implemented up to intelligence level 4
(average). Don’t expect monsters to act particularly smart in any case. You are
free to use codes above 4: in future releases of the Dream engine, monsters
will be smarter if you employ those codes.

Remember that intelligent monsters will be harder to kill; so, all other things
being equal, they should be rewarded with more experience points.
Monster behaviour
Normally, you’ll want your monsters to behave aggressively. Monsters usually
start attacking the player party, and might panic later.
Under version 1.5 and following of the Dream engine, the Scenario Designer is
free to specify a different behaviour for monsters. Consult the following table:
Code Meaning
P (Panic) The monster will flee the nearest character. Stupid monsters will

flee the last character which hit them, disregarding all other considerations
F (Fight)Standard behaviour. The monster tries to hit a character. If all

characters are beyond range, the monster walks toward the nearest
character. If two or more characters are equally distant, the monster
chooses one at random.

G (Group) The monster tries to get near to another monster
S (Stand) The monster stays where you placed it. It will try to hit a character

as soon as one is in range. Standing monsters can panic as usual. This
behaviour is particularly useful for bodyguards to a spellcaster or for fighter-
types defending a row of archers.

H (Helpful) The monster is friendly. It will get near the group, select a
similarly-aligned character, touch him or her. If you have enabled the “can
cure” monster ability, it will cast a cure spell.

R (surRound) The monster will coordinate with the other monsters and try to
corner the player characters, surrounding them.
This behaviour is not yet available. It will be implemented under version 2.0

of the Dream engine.
Controlling a monster

You’ll normally be happy to leave the monster to the Dream system. Under
version 1.5 and following of the Dream application the designer can also take
control of the monster, specifying each and every action to be performed by it.
If you choose to attach a Monster Decision List (MDeL for short) to a monster,
you’ll be allowed to choose what a monster will do. Your list of actions will be
executed, one per melee round, by the monster.
Via a MDeL you can create spell-casting monsters, talking monsters and other
sophisticated adversaries for the player.
Each move if the list contains a verb, a direct object and an indirect object. For
example, you can order the monster to cast a “cure graze” spell upon itself. In
this case, “cast” is the verb; “cure graze” is the direct object, “upon yourself” is
the indirect object.
The direct and indirect object are specified using the numeric identifiers from
the following numeric object table:
Code Meaning
10 The nearest fighter
11 The nearest ranger
12 The nearest paladin
13 The nearest rogue
14 The nearest cleric
15 The nearest wizard
0 The nearest Evil and Lawful character
1 The nearest Evil and Neutral character
2 The nearest Evil and Chaotic character
3 The nearest Neutral and Chaotic character
4 The nearest Totally Neutral character
5 The nearest Neutral and Lawful character
6 The nearest Good and Chaotic character
7 The nearest Good and Neutral character
8 The nearest Good and Lawful character
20..27 The character whose icon is at the topmost, second, third... bottom-most

place in the Roster
30 The character with the least HPs
31 The nearest character
50..99 The first, second, third… nth monster alive
100 Myself
Warning: if there’s nobody fitting the description (e.g., you are asking a
monster to walk towards the nearest fighter, but there’s no fighter in the player
group), the Dream engine will substitute code 31 (in the example above, the
monster will march towards the nearest enemy character.
The verbs
The following table lists the verbs you can use in a Monster Decision List:
Verb DIRECT object INDIRECT objects
8: move North None None
2: move South None None
4: move West None None
6: move East None None

5: stand still None None
7: move North-West None None
9: move North-East None None
1: move South-West None None
3: move South-East None None
M: move towards… (or try to
hit, if in range)

Code from the numeric
object table

None

K: Cast a spell Spell code (see the next
chapter, the Dream
Database, for a list of
available spells)

Code from the numeric
object table

I: Let the Dream engine
choose an appropriate move

None None

S: Speak Id of a TEXT resource to
show

Id of a ‘snd ‘ resource to play
(or zero if none)

F: Flee from Code from the numeric
object table (must be below
50)

Wandering monsters
Inside monster-infested places, the characters might run into wandering
monsters. You can specify which places have wandering monsters, and which
kinds of monsters can be met there. The characters won’t be allowed to rest or
wait in such places.
In Dream 1.0 there’s a fixed chance of meeting wandering monsters (on the
average, one encounter for every 36 moves). If your scenario runs under
Dream 1.1 or greater, the Info resource created by the scenario Designer tells
to the Dream engine how often an encounter will occur.
For each monster definition, you’ll have to specify the maximum number of
monsters in the wandering group. For example, if you say that goblins form
groups of up to six monsters, the character will face groups of either one,
two… or six monsters. Try to be logical, and remember: monsters which
believe in order will tend to form groups. Chaotic monsters will be more likely
to stay alone and aloof. Wild beasts might hunt alone, in couples, or in a pack.

The Dream Database

Resources of common use (all standard spells, the items
which are usually found inside shops, some common icons
and more) are kept inside the Sword Dream DataBase file
(Dream DB for short). The Dream DB is a part of the Dream
package from version 1.1 only: version 1.0 kept those
resources inside the Dream application: thus under 1.0 it isn’t
possible to safely transfer non-standard items and spells
from scenario to scenario (when a scenario is discarded, the
scenario file is closed and all resources inside it are
forgotten).
Now, a scenario Designer like you can make use of the
Dream DB, and even opt to include his or her ideas inside
the Dream DB.
An example or two should help make the concept crystal
clear. You wish to include a shop in your scenario: why
bother selecting the available items one by one? There’s a
standard shop inside the Dream DB: just use it. Need a key
to that safe? There’s an icon ready for use in the Dream DB.
Icons
The following icons are available inside the Dream DB. They are guaranteed
to be available in each and every future versions, and will be graphically
enhanced if needed. Use them as needed (but remember that the if you do
your scenario will only work under version 1.5 or following of the Dream
application).
Numeric ID Icon
201 Magnet (metal bar)
202 Vial (mercury)
203 Question mark (use it during development

for items whose icon isn’t ready yet)
206 Food
207 Glass lens
208 Fungi
209 Mirror
210 Iron rations
211 Long sword
300 Potion
301 Amber
302 Bat guano
303 Lamp
304 Shield

305 Short sword
306 Mace
307 Long bow
308 Quiver
309 Darts (shuriken)
310 Book
311 Sling
312 Staff
313 Gem
314 Stones
315 Iron spheres
316 Dagger
317 Magic staff
318 Magic wand
319 Leather armor
320 Plate armor
321 Splinted armor
322 Chain armor
323 Scale armor
324 Ring armor
325 Key
326 Short bow
327 Two handed sword
328 Rope
329 Scroll
330 Axe

Items
Numeric ID Item
128 Holy water
129 Amber
130 Bat guano
131 Manna
132 Glass lens
133 Magnet
134 Fungi
135 Mercury
136 Silver mirror
138 Iron rations
200 Rations
201 Potion
400 Mace
401 Leather armor
402 Ring mail
407 Plate armor
406 Splint mail
405 Chain mail
404 Scale mail
403 Shield
408 Bow long
409 Long bow arrows
410 Short sword
411 Dagger
412 Long sword
413 Sling
414 Staff
415 Stone bullets
416 Iron bullets
417 Darts
418 Bow, short
419 Shortbow arrows
420 Axe
500 Lamp
501 Rope

Spells
Cleric spells
Numeric ID Spell
300 Curse undead
301 Cure graze
302 Slow poison
303 Cleric light
304 Soul search
305 Bless
306 Damn
310 Cure illness
311 Protection from fire
312 Protection from cold
313 Feign death
314 Illness
315 Multiply food
316 Protection from electricity
317 Detect invisibility
318 Undead protections
320 Cure poison
321 Curse all undead

322 Poison
323 Cure wound
324 Protection from arrows
325 Prayer
326 Invisibility
330 Restore
331 Prayer
332 Vision
333 Saint Sebastian’s Bless
334 Saint Fakir’s Flemma
340 Cure gash
341 Remove curse
342 Excommunication
350 Raise dead
351 Group invisibility
360 Cure all wounds
361 Armageddon

Wizard spells
Numeric ID Spell
200 Magic Missiles
201 Shocking grasp
202 Wizard light
203 Wizard sword
204 Mind shield
205 Freeze
206 Silver rune
207 White rune
208 Blue rune
210 Identify
211 Slow
212 Haste
213 Mind blast
214 Galvani’s spark
215 Fly
216 Ground
217 Black rune
218 Red rune
220 Wizard sword +1
221 Identify all
222 Blast Fireball
223 Call Lightning
224 Dispel magic
225 Acid Arrow
226 Hailstorm
230 Slow all
231 Mind storm
232 Fly all
233 Ground all
234 Teleport
240 Flesh to stone
241 Stone to flesh
242 Faraway lightning
243 Teleport Home
250 Wizard’s Wrath
251 Crushing word
252 Simulacrum
260 Killing word

The conflict resolver
In order to better understand the requirements of a scenario, we must discuss
the inner workings of the Dream application at large.
Let’s suppose that a player faces and tries, one after the other, two different
scenarios. During game play of scenario A, our player finds a magic sword.
During game play of scenario B, the player is rewarded with a gem. Unluckily,
both items (sword and gem) were given item ID 1000 by their respective
Designers (who don’t know each other and, thus, can’t talk about the problem).
If such an unfortunate combination of events happens under Sword Dream
1.0, as soon as the player quits the first scenario and enters the second, the
sword is effectively forgotten and substituted with the gem. That is, the sword
turns into a gem.
This is, to say the least, Not A Good Thing. Sword Dream 1.5 can prevent it
happening... but it needs your help.
What’s the Conflict Resolver?
Under version 1.5 and following, you can add an AdDB resource to your
scenario. There you should list all of the items and spells that a player might
wish to take from your scenario into the following. Sword Dream will do the
hard work from there.
Back to our example. The Designer of the first scenario indicates (in her AdDB
resource) that the sword might be kept by the player. So Sword Dream copies
the definition for the sword in the Dream Database as soon as scenario A is
opened: this way the sword won’t be forgotten when the scenario is finished
and closed.
When the player switches to scenario B, Sword Dream sees the gem with the
same ID as the sword, realises the danger, and acts.
There’s a piece of very sophisticated code, inside Sword Dream, called the
Conflict Resolver, which gets executed in these cases. In short, the resolver
sees that the two items share a single numeric ID, and changes one of the two
to a spare ID. For example, the Resolver gives an ID of 20000 to the sword
and brings every reference to it in memory up to date. The character holding
the sword finds himself holding item ID 20000, and the sword definitely doesn’t
become a gem.
Life with the Resolver
As I said before, Sword Dream needs your help to make the Conflict Resolver
work. Whenever you create a resource which could be use in other scenarios,
you must tell it to the Sword Dream application (by adding the resource
signature to the AdDB list). Whenever Dream will meet your scenario in some
computer, it will copy your resources inside that computer’s Dream DB.
You might wonder how you can recognize if a resource that’s part of your
scenario needs to be included in the AdDB list. That’s easy. Let’s suppose that
you create a custom spell for use with an ingenious trap. You know that the
trap is part of your scenario, and your only. So there’s no need to put the spell

in the AdDB.
If, on the other hand, you create a “Turn every enemy monster into a frog”
magic wand, the “turn target into a frog” spell must be put in the AdDB (as
must the wand ‘Obj ’ definition), because the wand might be kept by a
character when he wanders into the next scenario.
Limitations of the current Resolver

The Resolver was created to work out the conflicts between items and spells
only (including their icons). That’s what a character is likely to keep when he or
she switches from scenario to scenario. The Resolver won’t help you if you
wish to put other things inside the Dream DB (e.g. a monster).
Also remember that the version 1.5 resolver requires that references to icons
are listed in the AdDB resource from the least-colored to the most-colored
version. For example, if your armor (‘Obj ‘ ID 1500) is represented by icon ID
4000, and you created all color version of the armor (B/W, 256-color and 16-
color), then you must insert in the AdDB the following data: ‘Obj ‘ 1500, ‘ICN#’
4000, ‘icl4’ 4000, ‘icl8’ 4000. You must include the icons, and they must be
listed in the order shown. You might also use the sequence ICN#, icl4, icl8,
Obj, but no other permutation of references is acceptable.

Making a scenario: a tutorial guide

In this chapter we shall be creating a very simple scenario, to
show the steps involved in creating a Dream adventure.
Here’s the core idea: a castle is haunted by a vampire. The
vampire should prove impossible to defeat by the PCs,
unless they discover a special magic item buried inside the
vampire crypt. That item can cast a destroying spell at the
monster.
The castle of terror: a map

Castle Yard
'Plac' ID 1000

Inside the Castle
'Plac' ID 2000

The crypt
'Plac' ID 2001

Gardeners' Hut
'Plac' ID 1001

Start
Using ScenarioMaker we create a new scenario. Type “Castle of Terror” as the
name for the new file.
Use the “Grab icons from…” command in the File menu, and select Spirit of
Darkness. This will borrow the icons used to depict scenario locations from
inside Spirit of Darkness. Of course, if you can draw you can also create brand
new icons, using ResEdit, or use the more fashionable 3D icons from Back to
Dawn Valley...
Quit ScenarioMaker, for now, and enter ResEdit. Open the following three files:
“Scenario Resources.rez”, “Spirit of Darkness”, “Castle of Terror”. The first
contains a few definitions we shall be using. The second will come handy for a
few ready components, the third is the scenario we are creating.
We are ready to start the creative part!

Monsters
Let’s say we wish to include a few undead inside the castle. They are
supposed to work as servants to the vampire. For a start we can borrow the
skeletons used inside ”Spirit of Darkness”. To do so we’ll copy the Mstr
resource, ID 1004, which describes the skeletons, and paste it inside “Castle
of Terror”. We shouldn’t forget the appropriate icon: let’s also copy the ICN#
resource, ID 2001 and the corresponding colour icon: icl8 ID 2001. (To

discover the ID of the icon you can open the Mstr resource and see).
Now, let’s create the vampire itself. The first thing we need is an icon. You can
create one yourself, or copy the ICN#, ID 2012, from “Spirit of darkness”. It
isn’t used in that scenario, and I put it there so that you’d have something to
work with.
Now double check that you have the “Castle of Darkness” window as foremost
in ResEdit, then choose “Create new resource” from the Resource menu. A list
of alternatives appears. Choose or type Mstr. A template appears.
We will fill in the blanks, following the guidelines detailed in chapter
“Resources” of this manual. For our vampire we choose:

Number appearing: 1
Alignment: 2 (that is, Chaos and Evil)
8-sided hit dice: 8 (it should be very nasty)
THAC0: 13 (that’s 21-8, where 8 is the level)
Attacks per two rounds: 2 (standard)
Dice of damage: 1
Damage die size: 1 (the real damage is magical)
AC: 5 (a supernatural defence, as it doesn’t wear armor)
XP: 1000
Can see invisible: 1, that is true
Can be invisible: 0, that is false
Can fly: 1
Regenerates: 0
Is undead: 1
Intelligence: 5 (high)
Morale: 140 (won’t flee)
Name: Count Vlad
Icon: 2012
Special attacks: leave all of those to 0 (that is false, that is “no”), but “Drains
levels” and “Fights”
The attack selector code isn’t needed for this monster, so leave it to zero. You
also must leave to zero all “reserved” and “spare” labelled attributes if you wish
to stay compatible with Dream version 1.1 and beyond.
Now for the special defences: Vlad is an undead, so he gets the standard
special features of the undead monsters: Mind attack immune, Poison
immune, Can’t be drained, Immune to death magic, Immune to illness. Being a
very high level undead, Vlad is also Immune to cold and Can’t be hit (by non-
magical weapons).
We’re finished. Before closing the window, choose “Get resource Info” from the
Resource menu and type a valid ID for the vampire. 1000 is fine. Please also
click on the “Purgeable” checkbutton.
You could also create some zombies, if you wish.

Now we can specify what kind of monsters are found wandering inside the
castle. Create a new resource, type Wndr and ID 2000 (the same as the
castle). Click on the row of asterisks and type Command-K to make room for a
monster ID. Type 1004 (it’s the ID for the skeletons, remember?)
If you created the zombie type monster click again on the asterisks, press
Command-K again and type the zombies ID.
Save the Wndr resource, checking that you gave it a correct ID and attributes
(purgeable).

Spells
We decided a while ago that the super-secret vampire-destroying magic item

will kill Vlad via a spell. So, let’s create this very special spell.
Double check that you have the “Castle of Darkness” window as foremost in
ResEdit, then choose “Create new resource” from the Resource menu. A list of
alternatives appears. Choose or type Spel. A template appears.
Let’s fill in the blanks, reminding that this spell shouldn’t be available to
characters: it’s only meant to be cast via an item.
Level: zero. This is fundamental to let Dream know that the spell is bound to
an object.

Kind code: 12; it’s a curse for an undead monster.
Reserved: zero. You must leave to zero all “reserved” and “spare” labelled
attributes if you wish to stay compatible with Dream version 2.0 and beyond.
Wizard or cleric: this doesn’t matter.
ST for none and ST for half: both zero, as we wish to make sure that the
vampire gets killed.
Dmg. is per level: 0, False. By the way, keep in mind that an item is considered
12-level when the level is relevant.
Can cast in fight: 1, true
Can cast in peace: 0, false
Area code: here, both a 2 (one enemy) and a 4 (every enemy) are OK. We
might wish to choose 4, as this area code will avoid the need to click on the
monster.
Distance: We don’t wish this to be relevant, so we’ll type 10. That is, the
monster will be hit no matter the range.
Area size: this doesn’t matter.
Damage die size: and Damage die qty: It’s vital that this spell kills the vampire,
so some huge amount of damage is called for. 20 die 20 should prove more
than enough.
Duration base and duration per level: both zero, as this spell is instantaneous.
Mat. required: zero, as it doesn’t make sense that a magic item needs some
material component.
Code selector: 0
Name: this doesn’t matter. The name won’t appear anywhere for an item-
based spell. You could type Vampire-killer for your own convenience.
Icon: this doesn’t matter. Use zero.

We’re finished. Before closing the window, choose “Get resource Info” from the
Resource menu and type a valid ID for the spell. 1000 is fine. Please also click
on the “Purgeable” checkbutton.

Objects
We are now to create the magic vampire-killer object. First we need an icon.
We can easily create one using ResEdit: a cross will do. Let’s give the icon an
ID of 2000 (the numbers between 1000 and 1999 are reserved for location
icons, remember?)

Next, we’ll make up the item itself. Double check that you have the “Castle of
Darkness” window as foremost in ResEdit, then choose “Create new resource”
from the Resource menu. A list of alternatives appears. Choose or type Obj. (If
you type it, please notice that there is a blank after the j. All resource
signatures are four letters). A template appears.

Icon: 2000

Magic: 1, true. It casts spells, so it is magic.
All of the following attributes should be left at zero.
Bonus/code: Here we should write the ID for the spell (read the paragraph
“items” inside the “Resources” chapter). So, let’s type 1000.
Number of charges: 1. We need the object to disappear as soon as the
vampire is killed. It wouldn’t be appropriate that the PCs took the magic cross
with them onto another scenario. Moreover, as the related spell is defined
inside this scenario, the item wouldn’t work in another scenario where the spell
isn’t defined.

Weight: Anything appropriate. 10 would be OK.
Price: The characters aren’t supposed to sell the item, so anything will do.
Wear on...: In hand, of course, is appropriate. In sack should also be allowed
(1), as with every item.
Which character classes will be allowed to use this item? Clerics, of course: so
set Clerics can use to 1. Paladins would be probably appropriate, too, so set
Paladins can use to 1.
Public name: A wooden cross
Private name: Count Vlad’s Death Cross
Weapon XXX: it isn’t a weapon, so write zero everywhere.

We’re finished. Before closing the window, choose “Get resource Info” from the
Resource menu and type a valid ID for the spell. 1000 is fine. Please also click
on the “Purgeable” checkbutton.

Scenario info
We must give some information to the Dream application about the inner
workings of our scenario.

Double check that you have the “Castle of Darkness” window as foremost in
ResEdit, then choose “Create new resource” from the Resource menu. A list of
alternatives appears. Choose or type ‘Info’. A template appears.

Minimum version of the Dream application: 100, as we won’t use the snazzy
new features of version 1.5.
Full scenario name: The Castle of Terror
Screen depth: 1, as we have quite a few icons in black and white only.
Language code: 0, American English
Scenario version: 100
Author name: Write your name
Minimum number of characters: 1, as we won’t allow creation of characters
inside the castle.
Max number of characters: 8.
Suggested min level: Your own evaluation. I’d say 2.
Suggested max level: I’d say 4. Higher level characters could kill the vampire
via spells.
New characters start at level: doesn’t matter. Characters won’t be created
here.
Group starts at: let’s say 5, 5. It depends on the map for place ID 1000, of
course.
Scenario signature: Write here a four letter code which should uniquely identify
your scenario. This is needed for compatibility. To guarantee maximum
compatibility, contact the author to register this code.
% for wandering monster: the suggested value is 16%, or one in six.

We’re finished. Before closing the window, choose “Get resource Info” from the
Resource menu and type a valid ID for the spell. 1000 is fine. Please also click
on the “Purgeable” checkbutton.

...and the rest
We’re almost done. Now we have to create an encounter with the vampire,
where our heroes get the chance to kill the bad guy. Or get killed, if they didn’t
find the magic cross.

Here’s a trick: the Nctr (encounter) format was changed for Dream 1.5. So we
need to use the stratagem detailed in the description for the Encounter
Resource to stay compatible with version 1.0: change the name for the Nctr
template in “Scenario resources.rez” to Nctr2, and then the name for Nctr1 to
“Nctr”. That’s it, we’re done.
Double check that you have the “Castle of Darkness” window as foremost in
ResEdit, then choose “Create new resource” from the Resource menu. A list of
alternatives appears. Choose or type Nctr. A template appears.
Must be done: Type 0
Item needed: type zero, as the encounter will take place even if the PCs didn’t
find the vampire. Note that there’s another possibility here: you could create an
encounter with a very weak vampire if the PCs found the cross, and strong
vampire if they didn’t. In this variant you don’t even need a spell bound to the
cross!
Arena ID: Type a valid ID and jot it down, as you’ll have to create an arena for
the meeting with the vampire. Maybe 3000.
Now click on the asterisk row and type Command-K. You’ll create the boxes
where you’ll type the vampire specs.
Monster ID: 1000, the ID we chose for Vlad.
Nr. in group: 1, of course.

Before closing the window, choose “Get resource Info” from the Resource
menu and type a valid ID for the spell. 1000 is fine. Please also click on the
“Purgeable” checkbutton.

Now we have to create the text, and maybe the pictures, for the scenario.
That’s very easy and we won’t bother the reader with details.
We’re done with ResEdit. That application can be quitted to return to
ScenarioMaker.

ScenarioMaker’s final touch
Full details on the ScenarioMaker application are given in the next chapter, but
let’s sketch its usage anyhow.
Using the File menu, open the “Castle of Terror” scenario. Choose “New place”
from the Place menu. Then fill in the dialog box, keeping one eye on the
scenario map which was drawn during the very first phases of scenario
development.

Place name: Castle Yard
Place ID: 1000
Place kind: Standard
Choose freely a height and width. 8 and 8 are fine, though.
Leave the checkboxes unchecked and, if you created text or pictures, type
their IDs in the boxes you see. Then press OK.

To draw the castle, as seen from outside, scroll in the leftmost window to the
far right, until you see the castle icons (there are two halves). Click on the first
icon, then click in the white window (somewhere in the topmost part,
centered), to place it. Click on the other half, and then click in the white
(construction) window near the first icon, to create the illusion of a full castle.
Then click on a small house, and place it aside, somewhere, alone. It’s the
Gardener’s Hut which we had planned.
Now for the green yard. Click on the all-green icon, and press F on the
keyboard to let ScenarioMaker fill the construction window.

You should also insert some data in the locations to let ScenarioMaker know
how the first place is bound to the others. The next chapter tells you how to do
that.
For now, we are finished: close the construction window and answer “Yes” to
ScenarioMaker’s suggestion that you should save it.

If you’ll also create the hut, the crypt, the castle interiors (just like we did the
yard) and then the arenas for fighting, you’ll have completed your first
scenario. Wasn’t that easy?
Oh, and don’t forget to use ScenarioMaker’s “Check scenario” feature before
you distribute your creation. I bet you’ll forget something if you don’t. I know: I
always do.

ScenarioMaker features and functions

ScenarioMaker is an application created to make easy the
building of place and arena resources.
An arena is the stage for a battle. In other words, it is what
appears inside the battle window, when fighting begins.
A place is a part of the world where the characters move.
The Valley of Dawn, an inn, a shop, one level of a dungeon,
are examples of places.
Using ScenarioMaker
First, you must ask ScenarioMaker to open an existing scenario file, or create
a new one. Then you are given the possibility of creating new places and new
resources, or to edit old ones.
Grabbing icons
If you create a new scenario from scratch, you might wish to reuse icons you
created for another scenario. To do so, simply choose “Grab icons from...”
from ScenarioMaker’s File menu. Then select an existing scenario.
ScenarioMaker will copy all location icons from the old scenario to the new
one.
A few warnings apply:
1. Don’t select the newly created (and empty) scenario as the scenario to grab
icons from. ScenarioMaker would be confused if the scenario to load from and
the scenario where to copy were the same.
2. Icon grabbing works even for scenarios which already contain icons.
ScenarioMaker will automatically renumber the new icons as it adds them.
3. Remember that icons are computer graphic pieces and, as such, are the
property of their creator. You can’t simply go around and grab icons from other
software.
You are granted the right to reuse the icons you’ll find inside “Spirit of
Darkness”, if you wish. Such icons are the exclusive property of us, the Dream
authors; you, as the legitimate owner of a copy of the Dream and
ScenarioMaker applications, are given non-exclusive rights to use them in your
own scenarios. If you do, please remember to list us as contributors to your
scenario (both inside the splash screen (PICT ID 1128) and the written
documentation, if any.
Icons for mapping
To create new places and arenas you must have already prepared the icons
you’ll use in laying out the maps. (See also the “Icons” paragraph in the
following chapter).

The icons windoid, to your left, shows all of the icons available. If some icons
don’t appear, or look funny, double check that you remembered to create an
ICN# resource, with a valid mask filled black, and that the icons ID are
numbered from 1000 upward, with no holes.
In the construction window, to your right, you can lay out the map of the arena
or place. The process is simple: first click on the icon you wish to use inside
the windoid, then click in the window to lay out the icon.
Symbols in ScenarioMaker
A few icons will, of course, be used to represent obstacles, like walls, water or
mountain ranges. You can teach ScenarioMaker to distinguish between
“impassable” icons and “accessible” icons. To do so, simply double-click the

“impassable” icons on the windoid. ScenarioMaker will mark as impassable
every location where the icon is used.
To check that you identified a the “impassable” icons as such, select
“Structure” from the appropriate menu, or press Command-T on the keyboard.
In the windoid, all impassable icons will be marked with a red circle. In the
construction window, impassable places will be marked dark grey, while
passable places will be shown in light grey. Use this feature to check that you
didn’t mistakenly divide a single place in two separate parts.
Other symbols used in the Structure view include:
• a hourglass-shaped yellow icon indicates locations which have an associated
piece of text,;
• a red bullet indicates locations where an encounter is bound to take place;
• a red T shows traps;
• four question marks show the locations where riddles are placed.
The fill mode
Suppose that you wish to fill a place with a background: maybe you just
created a building in the center of the window, and now simply wish to extend
a grass lawn everywhere else.
To do so, first click on the icon with which you plan to fill in the holes. Then
press ‘F’ on the keyboard. ScenarioMaker will fill every white space on the
window with the icon you selected.

Creating an arena
Arena attributes
You should set attributes valid for the whole arena when you create the new
arena; still, you are allowed to change your mind later. Choose “Area info…”
from the Area menu to change the attributes you stipulated when you created
the arena.
Arena name
This is the name that will appear as title of the window where fighting takes
place. Keep it short, so that it will fit. This name will also be used inside
ResEdit to identify the ‘Aren’ resource.
Arena ID
This is the resource ID of the ‘Aren’ resource where ScenarioMaker will save
the arena map. remember that only IDs between 1000 and 9999 are
considered valid.
Warning: if you change the ID of an arena already in existence, and set it to
the ID of a different, already-existing arena, the latter will be destroyed and
overwritten with the former.
Arena X and ArenaY
These are the horizontal and vertical sizes of the area, expressed in tiles.
Since Dream is supposed to be playable even on LCs and Color Classic
Macintoshes (with 12 inch screens), ScenarioMaker will restrain you to a
maximum size which will be acceptable on such small screens.

The minimum size of an arena is six units by six units.
Arena location attributes
You can directly set the attributes for every location if you double-click on the
location in the main window. You’ll see a dialog box appear.
The meaning of the fields in the dialog box are as follows:
Is holy

Holy places (which are supposed to be extremely rare) damage evil
supernatural beings by their very presence. If a demon, devil or other such
creature were to step onto such a location, it would be damaged for each and
every passing round.
Is unholy
Unholy places (which are supposed to be extremely rare) damage good
supernatural beings, including paladins.
Is neither
Most places are neither holy nor unholy.
Slows
Locations marked “slow” will make every creature passing them slow down to
one move for every two rounds. It is intended to be used for realising traps,
like quicksand, narrow bridges, glued floors and such.
Anti-magic
Anti-magic locations (which are supposed to be the rarest of all places) make
automatically fail every spell cast from there, or on there.
Is impassable
Impassable locations won’t let any creature walk on their surface. Note that
flying creatures (monsters and player characters so empowered via a Fly
spell) will be able to transit above impassable locations, thus making the
attribute irrelevant.

Creating a place
Place attributes
You should set attributes valid for the whole place when you create the new
place; still, you are allowed to change your mind later. Choose “Place info…”
from the Place menu to change the attributes you stipulated when you created
the place.
Place name
This is the name that will appear in the transcript windoid when the group
enters this place. You are restricted to 30 characters maximum length. This
name will also be used inside ResEdit to identify the ‘Plac resource.
Place ID
This is the resource ID of the ‘Plac resource where ScenarioMaker will put the
place map. remember that only IDs between 1000 and 9999 are considered
valid.
You should use IDs between 1000 and 1999 for those places where the player
can go even if all of his/her characters are dead (or even non-existent). Use
IDs of 2000 and above for the places where adventuring takes place: Dream
will make sure that the player only enters those when his/her group is ready for
adventuring.
Warning: if you change the ID of a place already in existence, and set it to the
ID of a different, already-existing place, the latter will be destroyed and
overwritten with the former.

X size and Y size
Spatial dimensions for the place. If the place is going to be a shop you should
type 1 for both. Try to calculate in advance the dimensions for the place: you
can resize it later, but if you do, garbage values will appear in the locations you
added, and you’ll have to put reasonable values in there by hand. It’s
bothersome.
Text on enter
Here you may type the resource ID of a piece of text (see Scenario
resources/Text). If you do, that text will be shown whenever the players enter
the place.
If Dream is running on a Macintosh where the MacInTalk Pro system extension
is installed, the text will also be read aloud by the Mac. MacInTalk Pro can be
run on any Macintosh capable to run Dream (LC or better), but is usually
preinstalled only on AV and Power Macintoshes; it takes up to 4 MB of RAM to
run — so, using

Dream with speech synthesis enabled requires a machine with at least 8 MB
of RAM.
Pieces of text whose numeric ID ends with a “1” (e.g. 1001, 1011, 1021.. 9991)
shall be spoken by a male voice. Pieces of text whose numeric ID ends with a
“2” (e.g. 1002, 1012, 1022.. 9992) shall be spoken by a female voice.
I suggest using speech synthesis to deepen the effect that a scenario has on
players: have characters met in the game speak to them, and avoid using the
MacInTalk Pro voices simply read aloud the places descriptions (like I did in
“Spirit of Darkness”!)
Text on exit
Here you may type the resource ID of a piece of text (see Scenario
resources/Text). If you do, that text will be shown/spoken whenever the players
enter the place.
PICT on enter
Here you may type the resource ID of a picture(see Scenario
resources/Pictures). If you do, that picture will be shown whenever the players
enter the place.
For map use PICT
If this button is checked, Dream will use a picture to represent the place on
screen (the icon map won’t appear in this case): just like you see in the
opening sequence for Back to Dawn Valley. Type in the box the resource ID for
the picture (PICT resource). Please remember that this feature is only
supported in versions 1.5 and above. If you insert a PICT map and run the
scenario under Dream 1.0 you’ll see the icon map instead, and the picture
map will only be revealed for a short while when the player exits the place.
If you opt to use a picture for map you MUST check “will be fully seen on
entry”. You can see how your place will look like selecting “Picture” in the
Place menu.
Bank, Brothel... Standard
Choose any one of those.
A bank is a place where characters can deposit money, withdraw it, and ask a
new fighter to join the group.
A brothel is a place where characters can rest for one night, buy standard
rations, and ask a new rogue to join.
An inn is a place where characters can talk with the innkeeper, buy standard
and iron rations, and ask a ranger to join.
A mage tower is a place where the player can buy components for his or her
spellcasters, and have a wizard join the group.
A shop is a place where the characters can buy and sell items. A shop must
have an associated ‘Shop’ resource, detailing what items can be found there
(See Scenario resources/Shops).
A shrine is a place where the player can have a paladin join the group.
PLEASE keep shrines extremely rare. Finding a shrine and convincing a

paladin to join the group should be a difficult adventure unto itself.
A temple is a place where the group can be cured of its physical troubles (for a
fee), and look for a cleric wishing to join.
In a special place you can place Extraordinary Characters for inclusion in the
group. See the description for the Extraordinary Characters in the next
chapter.
A standard place is neither of the above: just some place where the characters
go adventuring, like a dungeon, a city or the wilderness.
Warning: Try to be reasonable. It doesn’t make any sense to find a bank in the
middle of a desert. If you wish to make something unavailable to the
characters (e.g. they can buy every component but amber), use overriding
(detailed in Tips and tricks/Overriding).

Must be saved when group exits
If this box is checked, Dream will save all changes to the place when the group
exits the place. Thus, encounters will take place only once. If the box is
unchecked, encounters programmed will take place every time the player
character enter a location where an encounter is scheduled to take place.
Light is needed here
If the box is checked, Dream will require player characters to use a source of
light, either magic (e.g. Light spell) or normal (e.g. a torch).
There are wandering monsters
If the box is checked, Dream will have random monster encounters happen to
the PCs. Player characters won’t be allowed to rest, relearn spells, or wait in a
place where monsters roam.
Warning: if you check this box, you must create a Wandering monster
resource where you specify what kind of monsters can be met here, and an
arena for meetings. (See Scenario resources/Wandering monsters).
Will be fully seen on entry
If this button is checked, the whole place will be shown to the player as soon
the group enters (there’s no need to explore to see what’s below the black
spaces). You should check this for places where there are no wandering
monsters.
This option is unsupported for Dream 1.0: under that version the player will
always have to explore to see the map.
Outdoors, indoors, indoors underground
This will enable Dwarves, Elves and Gnomes to use their racial powers.
Moreover, flying characters can fly over obstacles when outdoors, but aren’t
allowed to do so indoors.
Place location attributes
You can directly set the attributes for every location if you double-click on the
location in the main window. You’ll see a dialog box appear.
The meaning of the fields in the dialog box are as follows:
Is impassable
Impassable locations won’t let any creature walk on their surface. Note that
flying player characters so empowered via a Fly spell will be able to transit
above impassable locations if your place is outdoors.
Text on enter
Here you may type the resource ID of a piece of text (see Scenario
resources/Text). If you do, that text will be shown whenever the players enter
the place.
If Dream is running on a Macintosh where the MacInTalk Pro system extension
is installed, the text will also be read aloud by the Mac.
If this location is available only to player characters who own a special item,
then this text will be shown only if they don’t own the item. You can use this
feature to create a door which is locked if they don’t own the key, or similar.

Item needed to enter
Write here the resource ID of any item the player characters are required to
possess to pass through this location.
Has trap/riddle/encounter/nothing
You can opt to have an encounter happen when the group steps onto a
location, or a riddle asked, or a trap spring. See the paragraph relating to
traps, encounters and riddles in the next chapter to see what these can do for
you. Remember that only encounters are supported under version 1.0 of the
Dream application
Player must search to encounter

If this box is checked and the “encounter” radio box is pressed, then the
scheduled encounter will take place only if the player explicitly chooses
“Search” from the Group menu. This can be used to hide treasures (like I did in
“Spirit of Darkness”), simulate hidden monsters or buried treasures, and other.
Takes group…
Some locations are “doors” between places. (See Inside Dream/Map of the
scenario). If you choose “Takes groups out of this place”, entering that location
will have the characters return to the place from which they came. If you
choose “Takes group into place ID...”, then entering the location will transport
the player characters to some other place. You should normally avoid use of
the “takes player out of here” option: the player knows that he or she has to
step onto the white border surrounding the place to step outside, and
transporting him or her out in this non-standard way can be confusing.

Scenario resources

In this chapter we will detail each and every characteristic of
the resources which comprise a game scenario. If the
description of a feature is marked with a delta sign (like this:
∆) then that feature is only available under some version of
the Dream application. For example, if you see:
% for wandering monsters (∆ 1.5)
...then you can set a percentage only under version 1.5 or
following. The Compatibility notes for each paragraph will
detail you more specific version characteristics for each of
the released versions of the dream application.
A few of the features are marked “incompatible with previous
versions”. If you choose to make use of one or more of these
features, then you must remember to set a minimum version
number inside your Info resource. For example, riddles were
introduced only in version 1.5 of the Dream application. If you
put a riddle in your scenario, then the scenario can only be
played under version 1.5 or following. Dream 1.0 wouldn’t
understand the instructions for a riddle, and would choke on
them. If you write that the minimum required version for the
dream application is “150” (that is, 1.5.0) in your Info
resource, then you don’t risk anything. If a player with Dream
1.0 tries to open your scenario, Dream sees that a newer
version is required, displays a dialog box saying that the
player should find a more recent version and doesn’t load the
scenario.

Everywhere inside ResEdit, “0” means “No” and “1” means
“Yes”.
Arenas
Resource signature
‘Aren’: a special place where fighting takes place.

What’s it for?
The arena is the place whose map appears inside the fight window wherever
the player meets some monsters. There ought to be an arena for every place
where wandering monsters may be found. Other arenas can be created for
special encounters.
Other needed resources
Before you can create an arena, you should prepare the icons used to
represent arena locations. Such icons must have consecutive numbers
starting from 1000
How to create one
Use the ScenarioMaker application, as detailed in ScenarioMaker features and
functions.
Compatibility
The “slows” and “anti-magic” attributes of an arena location is supported only
under version 1.5 or following. Dream 1.0 allows these boxes to be checked,
but won’t support them.
Tips and tricks
You can easily create multiple similar arenas adapting the trick detailed under
Places (see)

Barkeeper tips
Resource signature
‘STR#’: a collection of strings.

What’s it for?
Inside STR#s you keep game tips which a barkeeper will give to its clients
during game play.
Other needed resources
None
How to create one
Simply use ResEdit. When the group enters an inn, they can chat with the
bartender. For each Inn you put in the scenario you must create a different
STR# resource, which must contain the strings which the bartender will speak.
For Dream 1.0, create three strings inside the STR#. The bartender will
immediately give away the first. To hear the second, the player shall have to
buy something, and to hear the third he will have to buy quite a bit of
merchandise.
Tips and tricks
Keep the most valuable tip for the third, and most hard to obtain, string!

Designer orders (∆ 1.5)
Resource signature
‘AdDB’: a list of resources to be ADded to the Data Base.
What’s it for?
The best feature of the Dream gaming system is arguably its modularity. Under
Dream, a player can use many scenarios from different Designers and still
integrate them into a unique gaming experience.
Some efforts on the part of the Designers are required to make this possible.
You must remember that the resources which constitute a scenario become
unavailable to the gaming system when the scenario adventure is finished and
the player switches to another adventure. So, Bad Things may happen if a
player buys an axe (‘Obj ‘ ID 5000) for his character, Grrr the Fighter, and then
switches to another scenario where the item ID 5000 is a frozen haddock.
The Sword Dream application does most of the work to keep the axe from
transforming into a haddock. Even version 1.0 offers some protection from
this. Still, a fully functional solution to the problem is found only under version
1.5 and following, with the Conflict Resolver (see its description in the Dream
Database chapter).
You simply have to list all of the objects and spells which you make available in
your scenario, and order them transported inside the Dream Database,
together with their icons. This way, objects and spells stay available forever.
Other needed resources
The AdDB resource should be the very last resource you put into your
scenario. When the design is finished you can look into your work and identify
the entities which might be kept (for items) or learned (for spells) by the player
characters.
How to create one

Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file. Fill in every field
of the template, listing the resource signature and ID for every resource which
you wish copied inside the Dream Database.
Compatibility notes

The AdDB resource is used only by version 1.5 and following of the Dream
application. You might state that your scenario is compatible with Dream
version 1.0, if you wish, as long as only items will be transferred from your
scenario to the next: under Dream 1.0 the item definition will be kept, but the
icon will be lost. You’ll probably want to limit usage of your scenario to Sword
Dream 1.5 users.
Tips and tricks
An ingenious scenario Designer might use the AdDB resource to keep his or
her scenarios small. If you create a series of, let’s say, three interlocking
scenarios, you might include the relevant monsters, places, pictures and
sounds only in the first scenario, and order them copied to the Dream
Database: thus they would be available for use even from the second and third
scenario which don’t contain them.

Encounters
Resource signature
‘Nctr’: description for a planned encounter.
What’s it for?
Encounter is a very general term, which might cover a fight with a group of
monsters, the discovering of a hidden treasure, or the location and reading of
an ancient rune. Or all of the above.
Encounters always take place at some fixed location. They conform to one of
three behaviours:
1. Encounters that always take place, whenever the player group passes
through the encounter location; e.g., a guard post at the gates of a huge city.
2. Encounters that take place only once. E.g., finding and fighting a dragon
and its hoard. (once they kill the dragon and take its treasure, if any, no more
encounters happen inside the dragon’s cove).
3. Encounters that take place only if the player characters actively search for
something (the player must choose Search from the Group menu for the
encounter to happen).
Encounters can also be bound to possession of some item (that is, the
encounter only happens if one of the player characters owns some particular
item).
Other needed resources
Before you create an encounter, you ought to create separate resources
describing all monster types and objects for the encounter. You also should
write the piece of text describing the encounter, and create an arena where the
encounter happens, using ScenarioMaker.
If one or more of the monsters found during the encounter must be precisely
controlled, create its Monster Decision List (MDeL) before the encounter.
Special note
The definition for an encounter as found in Sword Dream version 1.0 was

found to be somewhat limited (for example, it didn’t allow a Designer to
precisely place the monsters inside the battle arena). Sword Dream 1.5
introduces a new, enhanced encounter type (the EE, or Extended Encounter,
for short). We encourage you to use this newer and more flexible form.
Should you need to create a scenario compatible with version 1.0 of the
Dream application, though, do the following:
1. Open the Scenario Resources.rez file
2. Open the TMPL icon
3. Find and select the “Nctr” item

4. Press Command-I. A window appears: Change the name of the item to
“Nctr2”
5. Find and select the “Nctr1” item
6. Press Command-I. A window appears: Change the name of the item to
“Nctr”
You can now create encounter using the old version 1.0 format. To return to
the newer format apply the steps above in reverse.
How to create one
Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file. Fill in every field
of the template, as detailed here:
Uses new specs (must be 1) (∆ 1.5)
Click on “1”. This informs the Dream engine that this encounter follows the
Extended Encounter framework.
Done (must be zero)
Click on “0”. The Dream engine will set this to 1 when the encounter happens,
to memorize that it already happened.
Item needed
If you wish to create an encounter that only happens if one of the player
characters owns some item, then type here that item’s ID. Otherwise, type 0
(zero).
Arena ID
Type here the ID of the arena where the player characters will fight the
monsters in the encounter (if any). If there are no monsters here, type 0 (zero).
Monster count
This field will initially show a -1 value. For each monster type you wish to put in
the encounter, click once on the row of asterisks, then press Command-K.
For example, if you plan to include five skeletons, you’ll add a single group of
monsters, and to do so you’ll only press once command-K. For five kobolds,
three goblins and one orc you have to add three monster groups; to do so
press Command-K thrice. Then fill in the fields that appear below, once per
monster group.
Monster ID
Type the numeric ID for the kind of monster. (The “number appearing” field
inside the monster description is not considered for an encounter. It only has
significance for wandering monsters).
PosX and PosY (∆ 1.5)
Coordinates for positioning the monster inside the battle arena. The upper-
leftmost position is 1,1, and the numbers grow when moving to the right and
bottom.
Tactics (∆ 1.5)
Type a letter in this box to describe the monster’s behaviour (see Inside a
Dream/Monsters/Monster behaviour).

Nr. in group
Type the number of monsters of that kind you wish to place in this encounter.
E.g.: for three kobolds, type 3.
Golden Eagles
Type here the number of golden Eagles that the characters will receive at the
end of the encounter. The amount is evenly divided between group members.
Treasure count
This field will initially show a -1 value. For each item you wish to put in the
encounter, click once on the row of asterisks, then press Command-K. Then fill
in the field that appears below
Item ID

Type the numeric ID for each of the items that the player characters will found
at the end of the encounter.
Please note that Sword Dream versions 1.0 through 1.6 only support a
maximum of 49 items for a treasure. If you exceed this limitation the
application might crash.
Encounter text
This text will appear at the beginning of the encounter.
Notes
To create a type-1 encounter (as detailed above, in the “what’s it for”
paragraph), mind that the “Must be saved when players exit” button is
unchecked in the place where the encounter takes place.
To create a type-2 encounter, the “Must be saved when players exit” button
should be checked.
To create a type-3 encounter, both the “Must be saved when players exit” and
the “Only when player searches” button should be checked.
Tips and tricks
You can create an encounter that takes place at either one of two locations by
creating a type-2 encounter, and then referring to it at both locations. So, you
could have guards at both entries of a tower, but when the guards are
defeated, both guard posts are left unattended.

Extraordinary Characters (∆ 1.5)
Resource signature
‘Char’: a non-standard character that the group meets.
What’s it for?
An Extraordinary Character (XC for short) is a monster or non-standard
humanoid being which the group meets in peace. The XC is allowed to join the
group, and is always found in a Special Place (see Special places in this
chapter).
Other needed resources
You must ready two different icons for each Extraordinary Character. The first
will be used to show the EC’s face in the Roster, while the second will depict
the creature full-figure and will be used during fights.
How to create one
Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file. Fill in every field
of the template. Most of the fields have the same name and use as in a
monster, or are self-explanatory. The others are detailed here:
Is poisoned
If you wish to create a poisoned Extraordinary Character, type here the
number of hit points the XC will lose every minute because of the poison.
Otherwise write 0.
Class

Write a class code, from Inside a dream/Characters.
Race
Write a race code, from Inside a dream/Characters.
XC destination
If you wish to have the XC leave the group as soon as a certain place is
reached, type here the place’s numeric ID. If you wish to leave the XC
indefinitely with the group type 10000.
XC text on exit
When the XC reaches its destination and disappears this text will be shown.

XC encounter on exit
When the XC reaches its destination and disappears this encounter will be
executed.
Notes
Under Dream 1.5 the XC won’t take part in fights. It has no need of equipment
(in fact, its equipment is invisible to the player) and needs no food. An XC can
cast spells, if you give it some, but won’t do so during fights.
Part of these limitations will be lifted under subsequent versions of the Dream
gaming system.
Compatibility
Extraordinary Characters can only be used under version 1.5 and following of
the Dream software.

Icons
Resource signatures
• ‘icl8’: icons for game play in 256 colors
• ‘icl4’: icons for game play in 16 colors
• ‘ICN#’: icons for game play in black and white
What’s it for?
Most everything in Dream is represented through an icon: the characters in the
player rosters are icons; the objects inside a character’s sheet are shown as
icons; and the maps are tiled icons.
Other needed resources
No other resources are pre-required.
How to create one
You create icons inside ResEdit. You also might use any graphic application
you like, and then paste your work using ResEdit.
When you are satisfied with your work, give it a meaningful name (command-I
in ResEdit, then type a name). Jot down the resource ID you gave to this icon
somewhere, as you’ll be required to type it to reference your artwork.
Notes
The color version of the icon is optional: Dream can work without them . Black
and white icons, on the other hand, are mandatory. So, for every icon you
create, there MUST exist a black-and-white version, in the form of an ICN#
resource. Furthermore, all ICN#s MUST have a valid mask, and the mask
MUST be a solid black (the icons for the monsters are the only valid exception
to this rule: you can have white holes in the mask to show the background
through).
Of course, all versions of the same icon must have the same ID. That is, if you
create a black and white icon, ICN# ID 2500, for a red dragon, the color
dragon should be situated inside icl4 and icl8 resources with ID 2500.
The Dream application code shall accept icons with any id (in the range 1000-
9999). Still, if you wish to employ the ScenarioMaker application to create the

maps, you must submit to a quirk which ScenarioMaker enforces: all icons
used to “paint” the maps must have consecutive IDs, starting with ID 1000.
Suggested ID values for the icons are 1000-1999 for locations, 2000-2999 for
monsters and 3000-3999 for objects.
Icon usage should be planned with care. If you create places and locations
very similar to those found inside “Spirit of Darkness”, you should use the very
same icons, or icons very similar to those. If you do, users will feel at home
when they

enter your scenario, because they will recognise familiar shops, temples,
mage towers and the like.
On the other hand, don’t reuse icons for totally (or even partially) different
places: this will confound users. So, for a temple of evil, come up with a totally
different icon.
Tips and tricks
Many designers feel frustrated with the size of the icons. Still, you may create
complex artwork by tiling different icons. Look at the bushes in “Spirit of
Darkness” to see a simple example: many different icons were created, each
with a part of the bush. Then, tiling the icons in the place map, the big,
complex bushes were created. You can do the same with mountain ranges,
floors, palaces...

Items
Resource signature:
‘Obj ’: an item to be bought, found, used, dropped or sold.
What’s it for?
Objects can be equipment (rations, armor, torches, weaponry and so on);
treasure (like a gem); magic enhancements (like a ring of protection), and
more.
Other needed resources
Before you create an object you should draw the icon which will represent that
item. When you create the icon write down its numeric identifier: you’ll need it
when you create the item.
If the item is a scroll (see: Inside Dream/Objects/Item categories/Scrolls) for a
new spell then you ought to create the spell before you create the scroll.
How to create one
Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file. Then create the
resource. Fill in every field of the template, as detailed here:
Icon: write here the ID of the icon you created to picture the item
Magic, weapon… scroll: See Inside Dream/Objects/Item categories.
Bonus/code: For armor, write here how much the armor will increase the
character’s AC. For scrolls, write here the ID of the spell. For generic magic
items, write here the ID of the spell that the item will cast when used.
Number of charges: For light sources, the number of minutes the item will burn
for. For food, this is the number of days the food will sustain the character for.
For magic items, this is the number of uses before the item is discharged.
Weight: Weight in pounds of the item.
Price: Value in GE of the item. Zero is perfectly OK. The maximum allowed is
32.000.
Wear on finger, shoulder… sack: See Inside Dream/Objects/Weight and other
things

Wizard… Fighter can use: See Inside Dream/Objects/Character classes and
items.
Public name: See Inside Dream/Objects/Weight and other things
Private name: See Inside Dream/Objects/Weight and other things
Weapon base damage: The magic bonus for magic weapons. Zero for all other
items. See Inside Dream/Objects/Item categories.
Weapon num dice and Weapon dice size: Together these numbers help fix the
damage a weapon will inflict. See Inside Dream/Objects/Item categories and
Inside Dream/Fighting/Damage.

Self-propelled throwing weapons
To create a self-propelled weapon (like a dart to be thrown by hand) for use in
a game scenario, do the following.
1. Create the weapon object as detailed in the previous paragraphs.
2. Set the “Throwing weapon” identification bit
3. Write “1” into the “Number of charges” box.
This weapons can be of the magic kind. You can set a Bonus in the
appropriate box.
Keep in mind that only Rogues should be allowed to use throwing weapons.
So, double-check that the Rogues allow bit is set, and that other bits are reset.
Throwing instruments
To create a throwing instrument (like a bow) for use in a game scenario, do the
following.
1. Create the weapon object as detailed in the previous paragraphs.
2. Set the “Throwing weapon” identification bit
3. Write “0” into the “Number of charges” box.
Keep in mind that only Rogues should be allowed to use throwing weapons.
So, double-check that the Rogues allow bit is set, and that other bits are reset.
Dream doesn’t allow creating magic throwing instruments. That is, no magic
bows in here. Why? Because there must be an algorithm by which the game
system can associate throwing instrument and appropriate ammunition. It
would be ridiculous to throw a stone with a bow or an arrow with a sling. So,
ammunitions “point” to the right kind of throwing instrument. But they couldn’t
do so if there existed multiple throwing instrument per ammunition (like a bow,
a bow + 1, a bow + 2…)
Ammunition
To create ammunition for a throwing instrument (like arrows for a bow), do the
following.
1. Create the ammunition object as detailed in the previous paragraphs.
2. Set the “Ammunition” identification bit
3. Write the appropriate number into the “Number of charges” box. For
example, if arrows are sold by the dozen, write “12” in the “Num charges” box.
4. Write the ID of the correct throwing instrument in the “Code” box.
Keep in mind that only Rogues should be allowed to use throwing weapons.
So, double-check that the Rogues allow bit is set, and that other bits are reset.

Monsters
Resource signature:
‘Mstr’: a monster kind (race).
What’s it for?
This resource describes the characteristics, special attack and defence forms,
and other attributes of a monster race.
Other needed resources

Before you create a monster you should draw the icon which will represent it.
When you create the icon write down its numeric identifier: you’ll need it when
you create the monster.
How to create one
Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file. Then create the
resource. Fill in every field of the template, as detailed here:

Number appearing: Maximum number of monsters in a group. See Inside
Dream/Monsters/Wandering monsters
Alignment: The alignment of the monster. See Inside Dream/Monsters/Monster
alignment
8 sided hit dice: This is the “level” of the monster. To calculate the amount of
hit points the monster has, Dream will throw this many times an eight-sided
die.
A kobold, goblin or other similar low-level monster will have one hit die. An orc
would have 2, and ogre 3. A wild panther might have 5. A demon would have 8
or 9 hit dice. A huge, ancient dragon might reach 16 hit dice.
THAC0: This number represents how good the monster is when fighting.
Consider an imaginary foe (a PC) for the monster whose armor class is zero. If
you wish that the monster hit the character one time out of 20, write 20. For
two times out of 20, write 19, and so on.
Very low level monsters should have a THAC0 of 20 or 19. A wild panther
would have a THAC0 of 15. A huge, ancient dragon might have a THAC0 of 2.
Attacks per two rounds: The number of attacks/mover the monster will do
every two minutes. It’s normally 2. A very skilled human fighter might have 3. A
panther might have 4 (two claws). A six-handed demon might have 12.
Dice of damage and Damage die size: Together these numbers help fix the
damage a monster will inflict. See Inside Dream/Fighting/Damage.
AC: The armor class of the monster. A slow monster would have 10. A slow
monster with leathery skin would have 8. A quick and/or small monster would
have 7. A crocodile or other beast with a thick, scaled hide would have 5. An
armored human foe would have 2. A dragon (which is a highly magic creature,
whose thick muscles would block enemy thrusts and whose hide is covered
with metallic scales) might have an AC between 2 (young, small animal) and -5
(ancient dragon). A supernatural foe of very high power, extremely agile,
maybe smaller than normal man, might even reach AC -10.
XP: The number of experience points that the character group will be awarded
for killing one monster of this kind. This amount will be evenly divided between
all characters.
A few examples: 10 XP for a weakly kobold, but at least 20 if the kobold has a
bow. 30 XP for a thickly-cuirassed giant ant or an orc; 100 for an ogre. 350 for
a panther. 500 for an infant dragon, and up to 15000 for a huge, ancient, fire-
spewing one. 1000 for a dinosaur; 5000 for a tyrannosaurus rex.
Can see invisible: Not yet implemented
Can be invisible: Not yet implemented.
Can fly: If “1”, the monster can pass above obstacles inside the arenas.
Regenerates: If “1”, the monster recuperates one lost hit point per minute.
Intelligence: See the table in Inside Dream/Monsters/Monster intelligence
Morale: The chance for fleeing, per minute, expressed as a percentage. This
amount is lowered by 10 for every friend of the monster that is killed during the

fight, and by 3 for every hit point that the monster loses. Shouldn’t be lower
than 100, except for special cases. 120 should be standard for organised
monsters, and 140 should be normal for well-organised, tribal, order-aligned
monsters. For berserker-kind monsters that will fight to the death, write -1.
Name: The name that will appear in the transcript windoid when the monster
moves.
Icon: write here the ID of the icon you created to picture the monster
SPECIAL ATTACKS (Can mind attack... Brings illness): See Inside
Dream/Fighting/Attack forms. The following are implemented for Dream 1.0:

Heal
Poison
Drain level
Fights... Fights as +5
Shoots missiles
Death ray
Curse
Illness
A normal monster should have all of there set to 0, with the only exception of
“Fights”. Archers should have all set to zero but “Shoots missile”.
Spare: Reserved for the future. Write 0.
Attack selector code: This is a number which further specifies the attack
abilities of a monster. For Dream 1.0, this is only used to specify the maximum
throwing range of an archer.
SPECIAL DEFENSES: (Mind attack immune... Immune to illness). These
specify the immunities the monster has to various attack types. All are
implemented.
Undead monsters should be immune to Mind attack, poison, drain, death
magic, illness. Most monsters (all but supernatural monsters) should be
immune to curses. Use logic here: a fire-spewing dragon should be immune to
fire. Some poisoning predators are immune to poisons (e.g. giant spiders), but
others aren’t (e.g. scorpions).
Spare: Reserved for the future. Write 0.
Special defences selector: This is a number which further specifies the special
defences of a monster. For Dream 1.0, this is reserved.
Notes
To create wandering monsters see Wandering monsters list..
Tips and tricks
You can create a monster that tries to flee immediately by setting its morale to
zero. Under Dream 1.5 you can do the same using the monster behaviour
specification in the Encounter resource. The first method requires a monster
concocted ad hoc, but works under every version; the second method lets you
reuse an already defined monster, and save disk space, but can only used
within an encounter.

Monster decisions (∆ 1.5)
Resource signature
‘MDeL’: a list of moves for a monster to execute
What’s it for?
A Designer can opt to control with maximum exactness every monster move.
To do so, you must create a list of orders to the monster. The monster will
execute your orders, one per melee round, until it is killed or it flees the arena.
If the list is executed to the end, then the Dream application takes control of
the monster decisions.

Other needed resources
You should create the Mstr resource with the monster definition before you
start working on the Monster Decision List.
How to create one
Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file. Then create the
resource.

For each move you with to insert, click once on the row of asterisks and press
Command-K. The fill in the boxes which appear.
Spare
This space is reserved for future enhancements. Type a one (1) in it.
Action
Type here a character representing the action the monster is asked to perform.
See Inside a dream/Monsters/Monster behaviour.
Direct/Indirect
Type here the numeric code for the direct and indirect object of the move. See
the table in Inside a dream/Monsters/Monster behaviour.
Compatibility
MDeLs are supported by version 1.1 and greater of the Dream application. If
you choose to insert one or more you should make certain that your Info
resource asks for version 1.1 of the Dream engine. If you don’t, a player using
Dream 1.0 will be able to open the scenario, but the software will then declare
the scenario damaged or faulty when the related monster appears, and quit on
the user.

Pictures
Resource signature
PICT
What’s it for?
You can have Dream display, inside the picture windoid, a color picture of the
place the characters have just entered or exited. This can add drama to a
scenario, and give the player a bird’s eye view at a place he/she just entered.
Other needed resources
No other resources are pre-required.
How to create one
Use your favourite graphic package to create the picture, or simply use a
digitised photo.
When you have the picture ready, copy it, switch to ResEdit, and paste it. Give
it a name and a valid ID with ResEdit’s Info menu item. Jot down the resource
ID you gave to this icon somewhere, as you’ll be required to type it to
reference your artwork.
Notes
Bit depth is not an issue: Dream will try to display the picture at the best
possible on the particular Macintosh on which it will run.
Size is not an issue, also. Don’t exaggerate or your scenario will become too
big to be manageable.
Important: remember that you MUST create a picture with ID 1128 with the
“about this scenario” information. All game scenarios ought to have one. This
picture should be a 16-greys PICT, no wider than 300 pixels. You can also
create a piece of text (see TEXT), ID 1128, to go with that picture.

Places
Resource signature
‘Plac’: the scene where player characters act.
What’s it for?

Every place resource keeps information about a single game site. A place may
be a castle or a shop, a tent in the desert or a shrine lost in the mountains.
Other needed resources
The places should be the very last entities you create inside a scenario, as
they reference nearly everything else: icons, encounters, text, pictures,
arenas, wandering monsters, and even other places.
How to create one
Refer to Inside Dream/Map of the scenario. First plan a map, as detailed there.
Jot it down a piece of paper. Then assign a number to every single place: start
with 1000 for the topmost place and work downwards from there. Then use the
ScenarioMaker application to draw the map of every single place and establish
the relations between places (see ScenarioMaker features and functions)
Notes
Double-check the resource IDs of the entities you refer to inside places. If you
decide that a piece of text, ID 1500, should appear when the players enter a
place, and then forget to create it, then Dream will recognise the error and
interrupt game play with an error message saying that the scenario file is
corrupt.
Tips and tricks
If you decide to create twin places (like a temple of good and a temple of evil
very similar), you might create the first, then save it, then reload it, change its
numeric ID and name using the “Place Info” item inside ScenarioMaker’s Place
menu, do the necessary changes and save it again. This will save time.
If you need to bar any one location in a place from the player characters you
can make that location impassable. If you do, the player has no explanation
why the location is inaccessible. For those occasions when you wish a
message displayed whenever the player tries to walk somewhere (e.g. “You
can’t enter this door, you don’t own the key”), do the following: open the
Location Info dialog box by double-clicking the location in ScenarioMaker.
Type 10000 in the “item needed to enter” box. Since items have IDs between
1000 and 9999, there’s no chance that a character will ever own an item with
ID 10000. Then create a TEXT piece with the message, and put its id in the
“Text displayed on entry” box, and you’re done.
Note that ScenarioMaker knows of this trick, and won’t question usage of item
id 10000 during a scenario check.

Riddles (∆ 1.5)
Resource signature
‘Ridl’: a question or a riddle which the player has to give an answer to.
What’s it for?
The Sword Dream application, from version 1.5 onward, lets you ask a
question to the player. You can have a dialog box appear, and present a
question of your own choice: this can be a riddle, the request for a password

or anything else.
The player can then type an answer. The Dream engine will evaluate the
answer and execute one of many different Encounters which you have devised
in reply.
Under version 1.5 you can create as many as three different outcomes: the
first and the second will depend on the player typing a specific answer, while
the third will be used for all other answers.
How to create one

Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file. Then create the
resource. Fill in every field of the template.
Compatibility
Riddles are supported by version 1.3 and greater of the Dream application. If
you choose to insert one or more you should make certain that your Info
resource asks for version 1.3 of the Dream engine. If you don’t, a player using
Dream 1.0 will be able to open the scenario, but the software will then declare
the scenario damaged or faulty and quit on the user.
Notes
When the Sword Dream evaluates the player’s answer, it strips uppercase
letters and diacriticals. Thus, “Hello”, “hello”, “HELLO” and “hellò” are
considered equal.
Tips and tricks
If you have no need for a second alternative (that is, your question has only
one acceptable answer, and everything else is just plain wrong) don’t write
anything in the “Answer 2” field of the template (leave it blank).

Scenario information
Resource signature
A single resource of type ‘Info’, ID 1000.
What’s it for?
Inside the Information resource you write information abut your scenario. This
information will be used by the Dream application to fully support your
scenario.
Other needed resources
No other resources are pre-required.
How to create one
Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file. Then create the
resource. Fill in every field of the template, as detailed here:
Minimum version of the Dream application
This is a number which represents the minimum version number of the Dream
application which your scenario can be played with. To be compatible with
Dream v1.0ß1 and following, write 90. To be compatible with v1.0 final, write
100. To be compatible with v1.0.2 and following, write 102. To be compatible
with v1.5 and following, write 150.
Full scenario name
This is the name that will appear in the main Dream window and the
transcripts. Remember that a user can easily change the name of the scenario
file, but he or she won’t be able to change this, the real name. Keep it short, no
more than 30 characters, or it won’t fit in the space.
Screen depth suggested

This is a number representing the Monitor setup that the Dream application, on
your behalf, will suggest to the player. The number should be either 1, 4 or 8
(for black and white, 16-colors, and 256 colors respectively). The values 2, 16
and 32 are supported but don’t make any sense with the current version of the
Dream application. Other values are invalid and shouldn’t be used.
If you created only ‘ICN#’ resources, use 1. If you also created a full-color
version of the artwork inside ‘icl8’ resources, then type 8. If you went full circle
and created also the 16-color version of the icons, inside ‘icl4’ resources, then
type 4.

Language code
This code is needed to let Dream know what human language you employed
in writing the scenario. This code is then passed to PlainTalk, so that your text
is pronounced using the correct phonemes. The numeric code should be the
same as in the ‘vers’ resource (see). The most common values are as follows:
0 American English
1 French
2 British English
3 German
4 Italian
Scenario version
This is the version number for your scenario. It should be version 1.0 (typed as
100) for the first release, then be incremented for subsequent releases. Use
the same conventions detailed for the Dream application version, above.
Author name
Your name goes here. Dream will use it in various dialog boxes. Use the
<given name, middle initial, family name> form.
Minimum number of characters
The minimum number of characters a player must have readied before
entering your scenario. If you allow creating characters inside the scenario, the
number may be 0.
Maximum number of characters
The maximum number of characters which the player should keep for game
play in the scenario. This is usually found after game testing. Keep in mind that
the Dream application won’t enforce the limit, but simply suggest to the player
that he or she doesn’t use/create too may characters.
Suggested minimum level
Type here the minimum experience level the characters should possess. If
your scenario is brimming with demon princes it doesn’t make sense to allow
first level characters in.
Suggested maximum level
Type here the maximum experience level the characters should possess. If
your scenario has a couple of kobolds with wood sticks as the greatest danger
it doesn’t make sense to allow twentieth level characters in.
New characters start at level (∆ 1.5)
The experience level of characters met and joined in the group during this
scenario. Should normally be 1, but can be higher if the scenario is particularly
difficult.
Warning: Dream v1.0 will generate first level characters no matter what you
write here.
Scenario signature
You must type here a four letter “signature” for your scenario. This will be used
by the Conflict Resolver to uniquely identify your work. A few examples: the
signature for Spirit of Darkness is SpDk. The signature for Back to Dawn
Valley is BkDV. You can use any mix of uppercase and lowercase letters, digits

and punctuation symbols. Remember to devise a different signature for each
one of your scenarios: to be perfectly certain that your scenario will be
compatible with everybody else’s, register the signature with the Dream
author.
% for Wandering monsters (∆ 1.5)
This is the percentage for appearance by wandering monsters. It is checked
once every six moves by the player when his or her characters are walking
through any monster-infested place.

Under Dream 1.0, this Designer-defined number is not used, and a fixed
percentage is used instead: Dream 1.0 always uses 16, that is 1 in 6. Thus,
under version 1.0 encounters happen, on the average, every 36 user moves.
Notes
The information resource is required.
Tips and tricks
If you wish to prominently display your name, address and other information
with your scenario, use the PICT and TEXT resources, ID 1128. Those will be
shown whenever the user chooses “About this Scenario” from the Apple menu.

ScenarioMaker information
Resource signature
‘SMkr’: Information created and maintained by the ScenarioMaker application.
What’s it for?
ScenarioMaker keeps track of which icons are used to represent impassable
locations. When you exit ScenarioMaker such information is saved inside the
scenario for future use.
Other needed resources
The SMkr information is related to icons.
How to create one
You don’t. ScenarioMaker does this for you.
Tips and tricks
You’ll probably want to leave this resource alone. Still, when you are
completely finished with a scenario, you might want to remove the SMkr
resource from it (using ResEdit). This will make the scenario file smaller by a
half kB.

Shop
Resource signature
‘Shop’: the list of items for sale at some place.
What’s it for?
A shop is a place where the characters can buy equipment, sell treasure, re-
equip themselves.
Other needed resources
Before you can successfully create a shop you must create all of the items
sold inside the shop (see Objects) and a Place for the shop to be in (see
Places).
How to create one
First create a place, using ScenarioMaker. Any size will do, as the player won’t
see inside the shop. 1x1 is fine, so you won’t waste disk and memory space.
In the “Place info” dialog box of ScenarioMaker, select the “shop” radio button.
Write a unique number, of your choice, between 1000 and 9999, in the “Time
for a step” box. Jot it down: that number will identify your shop.

Then open the scenario using ResEdit and the “ScenarioMaker.rez” file.
Create a ‘Shop’ resource, with the same ID that you wrote before in the “Time
for a step” box. Put the IDs of the items for sale inside the ‘Shop’ resource.
The order you use in specifying the items is the same order the items will
appear inside the shop.

For example, if “At the Old Dwarf’s” ('Plac' ID 1066) people can find maces ('Obj ' ID
1176) and swords ('Obj ' ID 1255), then create a 'Shop' resource, ID 1066 (the same ID
as the 'Plac') and put inside it the numbers 1176 and 1255.
Notes
You are limited to a maximum of 50 items in a shop. If you put more items than
fit the available space, the scrollbar at the right will activate.
The standard shop (∆ 1.5)
Under version 1.3 and greater of the Dream application, there’s a standard
shop defined for your use inside the Dream Database. If you wish to offer a
shop which lists standard items, like the shops which are found in Spirit of
Darkness or Back to dawn valley, simply create a “shop” kind of place in
ScenarioMaker and write 10000 in the “Time for a step” box. That’s it.

Sounds
Resource signature
‘snd ‘: Digitised sound.
What’s it for?
If you wish to create a genuine roaring monster put a ‘snd ‘ with the same ID
as the monster inside the game scenario.
Other resource needed
‘Mstr’ resource with the same numeric ID as the sound.
How to create one
Sounds can be created with the microphone that most likely came with your
Mac, and the Sound control panel, then pasted inside the scenario using
ResEdit.

Special places (∆ 1.5)
Resource signature
‘Menu’: menu items for non-standard places (but see below)
What’s it for?
Under version 1.0 of the Dream application, a scenario Designer could create
places of many different kinds. First came temples, inns, shops and other
standardized places; then there were generic, non-descript places useful for
exploration and adventuring.
Under version 1.5 and above of the dream engine, a Scenario Designer can
devise places with very special characteristics (like a prison, or a tomb). Inside
a special place you can have the player characters meet other characters (the
so-called Extraordinary Characters) and have those join the group.
Other needed resources
To create a Special place, you must prepare four different resources.
1. Create the map of the place using ScenarioMaker, as always. Remember to
select the “Special” radiobutton in the Place Info dialog box.
2. Create the non-standard menu for the place, as detailed in the following

paragraph.
3. Write the text that will appear when the first menu item is selected by the
player, as detailed below.
4 (and optional). Prepare an Extraordinary Character, following the rules
exposed earlier in this chapter (see Resources/Extraordinary characters).
These four resources ought to have the same numeric identifier.

How to create one
Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file. Then create the
resource. Fill in every field of the template.
First of all, type a name for the place (something like Prison, or Prairie, or
Hole): it will be used as a title for the menu.
Then type the text for the first menu item. When (and if) the player selects this
item, the TEXT with the same id as the Menu resource will be shown.
If you wish to have an Extraordinary character associated with the place then
write a third line (a second menu item). When the player chooses this last
menu item, the Extraordinary character joins the group.
Notes
Handling of Special places and Extraordinary characters will become more
sophisticated under later versions of the Dream software.
Compatibility
Special places are supported by version 1.3 and greater of the Dream
application. If you choose to insert one or more you should make certain that
your Info resource asks for version 1.3 of the Dream engine. If you don’t, a
player using Dream 1.0 will be able to open the scenario, but the software will
then declare the scenario damaged or faulty as soon as the player enters the
Special place, and quit on the user.

Spells
Resource signature
‘Spel’: description of a spell
What’s it for?
Spells can be created for magic users and clerics to learn and use. Or, special
spells might be concocted for making up a truly special magic item.
Other needed resources
You should draw an icon to represent the spell before you create the spell
itself. The icon is not needed for spells which will only be cast via a magic
item.
How to create one
Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file. Fill in every field
of the template, as detailed here:
Level: the level of the spell. See Inside Dream/Spells/Spell level and IDs, or
use zero for a spell to be cast by a magic item.
Kind code: The type of magic the spell works. See Inside Dream/Spells/Other
spell attributes and Inside Dream/Fighting/Attack forms.
Reserved: Write a zero here.
Wizard or cleric: Click on zero for a wizard spell, one for a cleric spell. It
doesn’t make any difference if the spell is to be used for items only.

ST for none and ST for half: See Inside Dream/Spells/Saving Throws. Only
one of the two may be set to “1”, meaning “yes” (or both might be zero).
Dmg is per level: If set to true (“1”), then the spell is meant to damage the
enemy, and the amount of damage depends on the experience level of the
spell caster; in this case, write the amount of damage per level in the damage
die size and Damage die quantity boxes, below.
Can cast in fight: If the spell makes sense during a fight, click “1”.
Can cast in peace: If the spell makes sense during everyday adventuring, click
“1”.

Area code: This indicated what target the spell has. See Inside
Dream/Spells/Area of effect. If the spell doesn’t have any obvious area of
effect (e.g. Light), write a zero.
Distance in units: Useful only for those spells which can be used during a fight,
this is the maximum distance in squares from the spellcaster to the target. For
spells whose area code is zero (the target is the caster), write zero. For spells
where the caster has to touch the target (e.g. Cure graze or Raise dead), use
1.
Area size: This is only meaningful for spells whose area code is greater than 4.
For circular area spells, this is the radius of the spell area. For square area
spells, this is the length of the side of the square. For straight path spells, this
is the length of the path.
Damage die size and Damage die quantity: Together these numbers help fix
the damage a spell will inflict. See Inside Dream/Fighting/Damage.
Duration base: For spells whose length is meaningful, this is the number of
minutes the effect will last. Use zero for permanent spells.
Duration per level: For spells whose length is meaningful and it depends on
the experience level of the spellcaster, this is the number of minutes per level.
For example, if a spell is meant to work for 3 minutes + 1 minute per level of
the spellcaster (that is, 4 min for a level 1 wizard; 5 min for a level 2 wizard; 6
min for a level 3 wizard and so on) then type a duration base of 3 and a
duration per level of 1.
Material required: This is a code for the material component required to cast
the spell, if any. See Inside Dream/Spells/Material components.
Code selector: This code distinguished between various types of the same
base spell. See Inside Dream/Spells/Spell codes
Name: The name of the spell, as it will appear inside the spellbooks.
Icon: Resource ID for the icon that will represent the spell.
Notes
If the spell can be learned by the characters, or is cast by a magic item which
the character can export to other scenarios, remember to insert it in the AdDB
resource.
Compatibility notes
Under Dream 1.0, scenario Designers wishing to create a new spell had to use
an ID between 200 and 369. Specific numeric IDs were allocated to each class
(wizard or cleric) and level. This was found to be limiting (no more than 10
spells per spell level were allowed) and dangerous (two Designers could
create overlapping spells). From Sword Dream 1.1 onward, any numeric ID is
suitable for any spell: a Designer is, thus, requited to use IDs between 1000
and 9999, just like any other resource.
Tips and tricks
If a spell is meant to be cast only through magic items, then disregard the
“Wizard or cleric” attribute, and don’t require any material components. Use

zero as the spell level. Then write the ID of the spell inside the item description
resource, as shown in Scenario resources/Objects.
You can create a spell which produces objects, either permanent or temporary
(like the Wizard Sword). To do so, use code 21 for the Kind of magic, and type
the ID of the object to be created inside the Selector code box.

Texts
Resource signatures
‘TEXT’: Written text to be spoken aloud on PlainTalk-equipped Macintoshes.

‘styl’: Styling information with font, size, style to be applied to the text when
shown in the text windoid of Dream.
What’s it for?
‘TEXT' & 'styl': for the descriptions of the places and any other text which is to
be presented to the player.
Other needed resources
No other resources are pre-required.
How to create one
Use ResEdit: create the TEXT resource and apply the font, style and size
attributes which you prefer. Keep in mind that, unlike the picture windoid, the
text windoid in Dream is fixed in size, so you can’t come up with anything too
big. ResEdit will create the appropriate ‘styl’ resource.
Jot down the resource ID you gave to your text somewhere, as you’ll be
required to type it to reference your text.
Notes
On a Macintosh with PlainTalk software installed, the TEXTs whose ID ends
with “1” (e.g. 1001, 1011, 1021…) shall be spoken aloud with a male voice.
Those whose ID ends with a 2 shall be spoken with a female voice. Others
shall simply appear in the windoid.
The TEXT resource, ID 1128, will be displayed when the user chooses “About
this scenario” in the Apple menu. You can use this feature to display your own
shareware/freeware/beerware/anythingware notice.
Tips and tricks
You can also created colored text . To do so you need an application which
supports styled TextEdit cut and paste (almost all modern word processors do,
with the exception of Microsoft Word). To see if your word processor supports
styled text, cut a piece of text from it and paste it inside the ScrapBook. If you
see ‘styl’ at the bottom line of the window, then your application does support
styled text. In that case, create the text inside the application, then paste it in
ResEdit.

Traps
Resource signature
‘Trap’: a mechanic or magic device which gets a change to work when the
player characters enter a specific location.
What’s it for?
To make life more difficult to the player you can create traps and place them
around. A trap is meant to be placed in some specified location, and can be
configured to produce a wide variety of special effects.
Other needed resources
Before you create the Trap resource, write two pieces of text. The first will be
shown if the trap snaps, and the second will be shown if the group ruffian
recognizes and dismantles the trap (it’s a 5% chance per experience level).

How to create one
Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file.
Trap base dmg; dmg num dice; dmg dice size

Together, these three values help determine the amount of damage a trap
inflicts onto each character in the group. For example: (5, 0, 0) means exactly
5 HP of damage. (0, 1, 6) means 1 to 6 (checked separately for each player
character). (1, 2, 6) means 3 to 13.
Invoke spell ID
If you write a non-zero id here, the Dream application will execute the spell
whose id you wrote, and target it onto the characters in the group. The spell’s
area of effect will always be transformed to “every character in the group”, no
matter what the spell template says. For example, you may create a poisoned
trap using spell ID 322 (the code for the third level cleric spell, Poison).
Text if sprung
Id for the TEXT piece which will be shown when the trap snaps (or zero for
none)
Text if found
Id for the TEXT piece which will be shown if the group ruffian keeps the trap
from functioning. Can be zero (for none) if you won’t allow ruffians to disarm
the trap.
Ruffian can disarm
If set to “1” (and it should), the group ruffian gets a chance to disarm it.
Won’t spring if group invisible (∆ 2.0)
Set to “1” when it makes sense, that is if the trap shouldn’t spring when the
group is invisible. Under Dream version 1.5 this feature is not implemented,
and invisible characters will fall into the trap.
Won’t spring if group flying
Set to “1” if the trap is mechanical in nature and depends on the characters’
weight. In this case a flying character gets the chance to avoid the trap.
Trap springs only once
Set to “1” if the trap works only once. This is how traps are supposed to work,
anyhow.
Sound (∆ 2.0)
Write here the id for a ‘snd ‘ resource which will be played if the trap snaps.
Compatibility
Traps are supported only by version 1.1 and following of the Dream
application. If you choose to insert one or more you should make certain that
your Info resource asks for version 1.1 of the Dream engine. If you don’t, a
player using Dream 1.0 will be able to open the scenario, but the software will
then declare the scenario damaged or faulty when the trap is found, and quit
on the user.

Version number
Resource signature
‘vers’: Version number. IDs: 1 and 2.
What’s it for?
The version number is used by the Finder

Other needed resources
None
How to create one
With ResEdit.
Notes
The Dream application doesn’t require the presence of a ‘vers’ resource.
Dream takes the version information it needs from the ‘Info’ resource. For the
convenience

of your game players, I suggest that you do include a ‘vers’ resource, and keep
it in sync with the information of the ‘Info’ resource.

Wandering monsters list
Resource signature
‘Wndr’: a list of monsters to be met randomly during adventuring.
What’s it for?
You may wish to add spice to your scenario with wandering monsters. Without
wandering monster, a game scenario would only present dangers where
encounters are planned and accounted for. With wandering monsters, a place
presents dangers of its own.
Other needed resources
Before creating a wandering monsters list, you must complete creation of all
monster types involved (see Monsters). The place where monsters will appear
must also be ready (See Places).
For every wandering monsters list there ought to be an arena where
encounters will take place. Such an arena must have the same ID as the
wandering monsters resource, and can be created either before or after the
wandering monsters list.
How to create one
Use ResEdit. Before you create the resource, check that you have opened
both your scenario file and the ‘Scenario Resources.rez’ file.
Create a Wndr resource whose numeric ID is the same as the place the
monsters will infest. Then write inside the numeric IDs of all the monster races
the player might encounter there. Order is not an issue. The probability of
meeting each monster kind is the same. The number of monsters met
depends on the “Number appearing” field inside the monster definition (see
Monster).
Example: the Dawn Valley (‘Plac’ ID 1000) is infested with Kobolds ('Mstr' ID 1176) and
Goblins ('Mstr' ID 1255). Simply create a 'Wndr' resource, ID 1000 (same ID as the
'Plac') and put inside it the numbers 1176 and 1255.
Notes
Avoid excessive use of wandering monsters. They should be a nuisance, not a
major peril. If you choose to put wandering monsters everywhere (like I did in
“Spirit of Darkness”), you ought to put a safe haven somewhere (so that
players can rest and cure their wounds during adventuring: maybe a holy
temple of some good deity was left inside that black-charred enemy land they
are visiting).
Tips and tricks
If you wish to reuse the same monster race for multiple wandering monsters
list, with varying difficulty, do this. First create the monster race (see
Monsters). Put a low number in the “Number appearing” box. Now (using
ResEdit) select the monster race, copy and paste it. You just created a perfect

duplicate: open it and put a higher number in the “Number appearing” box. You
may now use the original in the Wandering monster list for a low-peril place,
and the variant for a high-peril place (maybe a lower level of the same
dungeon?)
To have a monster race appear more frequently than another, you can use
more than once the same monster ID inside the list. In the example before, if
you wrote a list consisting of the numbers 1176, 1176, 1250 you’d have a
double occurrence for kobolds than for goblins.

Sometime soon

There is nothing sacred or immutable in Dream: I started the
Dream project with a very broad view of its possibilities, and
I’m not finished. Dream, inside, is totally object-oriented and
modular. This means that I can change major parts of the
architecture without disturbing the rest of the game engine.
Animated displays, three-D displays, more intelligent
monsters, more encompassing spells: all of this can be done.
And I will do it, if given the possibility.

I thought I’d say something about future enhancements to
the Dream engine, so that you, the scenario Designer, can
plan in advance your developments.
A few gaming ideas, in fact, would be difficult to implement
right now, but much easier later on, when these
enhancements to Dream will be yours to tap into. Other
game ideas can be developed into game scenarios right now,
and enhanced later: future versions of Dream will, in fact, run
current game scenarios unmodified, and be able to run new
scenarios which the current version is unable to support.
A few enhancements will be transparent to your scenario. For
example, when players will be able to drive Dream entirely
through speech commands, your scenario will play and there
will be no differences in the quality of game play or its
pathos.
I’ll be creating future versions of Dream if I get enough
shareware fees to keep my interest in the program. You, as a
game designer, most certainly share my interest in seeing
our labor rewarded: your own game scenarios, in fact, are
independent software, which you can release — as public
domain, freeware or shareware — yourself.
DreamBasic
Dream v 2.0 will feature a programming language, DreamBasic. With

DreamBasic, you’ll be able to write short pieces to code that will be attached to
monsters, objects, encounters and spells.
For example, you’ll be able to write things like “if there are two or less
adventurers, then have three Kobolds at them; if there are three or four player
characters, let’s dispatch four; otherwise, send five”.
Or maybe: “when this monster is killed, the others will panic and flee”.
If you can’t program, don’t fear. DreamBasic will be extremely simple to use. If
you can create macros in Excel or QuicKeys, you’ll be able to create
DreamBasic code.
The DreamBasic engine is already written: I’m just waiting to find time enough
to insert it into Dream and debug it.

Interaction with monsters

Right now, it’s kill them or flee (well, there are good-aligned monsters, but they
don’t really make much of a difference). In the future, the characters will be
able to try to give food to monsters, or try to converse with a few of them.

More character races and spells
Every new version of the Dream application features more spells. This is sure
to influence play. For example, suppose you create a scenario whose main
feature is a complex labyrinth. Then I go ahead and create a “destroy walls”
spell. Poof: the scenario isn’t worth a thing. If you fear this, there are a couple
of things you could do: first, drop me a note, so that I won’t step blindly ahead
and ruin your work unknowingly. Second, include a short note in your scenario
documentation: advice players to avoid use of the unlisted spells if they don’t
wish to spoil the fun.

Spells
The spell icon
In release 2.0 spells will be shown by icon, and not by name. (They would
already if I had been able to convince Eugenio to draw them — now I’m going
to corner him). If you create a spell, do come up with an appropriate icon, and
store a reference to it in the appropriate field of the spell template.

Tips and tricks

Overriding
In exceptional cases, a scenario can contain resources with IDs lower than
1000, to obtain an effect known as “overriding”.
Overriding takes place when you copy a resource from inside the Dream
Database, modify it to suit your own nefarious purpose, and then place the
copy inside your game scenario. If you do this, Dream will use your modified
resource instead of its own internal resource.
Effects of overriding
By overriding, you can obtain very interesting effects. Suppose that you wish
to create a scenario where spell components are very hard to find. Still, you
wish to put a mage tower inside the scenario (just in case the player wishes to
add a wizard to his/her group). This is easy to do through overriding, and
impossible to do otherwise.
Here’s how: open a copy of the Dream application with ResEdit. Locate and
copy the MENU resources used inside wizard towers. Open your own game
scenario file. Paste the MENU in it. Now open the MENU resource, and
uncheck the “Enabled” attribute of every item that refers to a spell component.
That’s all.
By overriding, a scenario can change the rules by which games are played.
For example, during a game scenario all spells which affect undead creatures
might not work (to reflect a powerful spell from a demon lord). To do so, the
scenario designer puts a copy of the spell resources (whose original copy
stays inside the Dream Database), where the effect of the spell is nullified. The
copy inside the scenario overrides the original description, and the effect is
obtained.
Massive overriding
With overriding, the sky’s the limit. Suppose you wish to create a science
fiction adventure.
First, draw the needed graphics and icons.
In your science fiction adventure, there shouldn’t be wizards and clerics, of
course, but spaceship pilots and scientists. So, you override the character
class icons and their names.
There are no spells, so you avoid use of spellcasting classes. This leaves you
with two classes (rogues and fighters), but that should be enough. So, you
don’t use wizard towers, shrines, inns and temples, but stick to banks and
brothels. There’s no place in your space station for a brothel? No problem:
override it and transform it into a spaceship pilots’ guild. Or a teleporting
station.
One last touch: create an ‘Info’ resource where you specify that a maximum of
zero characters should be allowed to enter your scenario. This to make sure

that nobody will take a paladin inside your space station (nor a fighter that
would be instantly transformed into a space pilot).
Warning
Future versions of the Dream application will, of course, need changes from
the current form. If you do use overriding, problems might arise. For example,
the “inn” menu was changed during the update from Dream 1.0 to Dream 1.5.
If you had created a scenario that overrides the Inn menu when 1.0 was the
current version, Dream 1.5 would use your menu (based on Dream 1.0)
instead of its own. The player would be unable to rest inside inns.

There’s a fast and easy rule to this problem: limit yourself to overriding those
contents of the Dream Database which are listed by ID in the Dream Database
chapter of this manual.
Don’t touch things defined inside the Dream application itself. This way you
are somewhat limiting the power of the overriding mechanism, but are
guaranteeing yourself future compatibility.

